Что такое скин эффект в проводах. Скин-эффект и его применение. График распределения тока

1. Поверхностный эффект ……………………………………………………..2

2. Электрический поверхностный эффект на примере шины прямоугольного сечения …………………………………………………….3

3. Расчёт комплексного сопротивления шины ……………………………...9

4. Магнитный поверхностный эффект ………………………………………11

5. Расчёт комплексной мощности в листе, обтекаемом синусоидальным магнитным потоком …………………………………...15

6. Анализ выражений для удельной комплексной мощности ……………17

7. Приближённые способы расчёта комплексной мощности в стальном листе, обтекаемом магнитным потоком.………………….....18

8. Электрический поверхностный эффект в проводнике круглого сечения …………………………………………………………….21

9. Эффект близости ……………………………………………………………..26

10. Комплексное сопротивление шины при наличии эффекта близости ………………………………………………………………………30

11. Параметры однофазного шинопровода …………………………………33

12. Электромагнитные поля и параметры шин трёхфазного шинопровода ………………………………………………………………..34

13. Расчёт поля в шинах С, В, А ……………………………………………...36

14. Расчёт комплексного сопротивления шины ……………………………38

15. Эквивалентные схемы замещения трёхфазного шинопровода при симметричной системе токов ………………………………………...40

16. Электромагнитное поле в оболочке кабеля …………………………….45

17. Комплексное сопротивление оболочки ………………………………….47

18. Список литературы ………………………………………………………...49

Поверхностный эффект

Экспериментально установлено и теоретически подтверждено, что переменный электрический ток (в том числе и синусоидаль­ный) в отличие от постоянного неравномерно распределяется по сечению токопровода. При этом всегда существует тенденция вы­теснения тока из внутренней части проводника в периферийную, т.е. плотность тока в проводнике возрастает по мере перемещения из глубины к поверхности провода. Это явление называют электрическим поверхностным эффектом. Его можно объяснить следующим образом.

Ранее указывалось, что вектор Пойнтинга имеет нормальную к боковой поверхности проводника составляющую, и это свидетельствует о проникновении в проводник энергии из окружающего про­странства через эту поверхность. Одновременно отмечалось, что электромагнитные волны распространяются в направлении вектора Пойнтинга и в проводящей среде затухают в том же направлении. Но если это так, то в проводнике, обтекаемом током, плотность тока, а также электрическая и магнитная напряженности у поверхности должны быть больше, чем в глубине. Электрическому поверхностному эффекту может быть дано и другое более наглядное объяснение. Если токопровод обтекается синусоидальным током, то его внутренние части сцеплены с большим магнитным потоком по сравнению с периферийными, и поэтому в них в соответствии с законом электромагнитной индукции будут наводиться большие электродвижущие силы, препятствующие изменению тока и находящиеся практически в противофазе с вектором плотности тока. По этой причине можно считать, что во внутренних частях токопровода суммарные электрические напряженности и плотности тока связанные между собой законом Ома () , будут иметь меньшие значения, чем в периферийных.

Если частота тока и параметры таковы, что глубина проникновения волны много меньше поперечного сечения проводника (Δ« d ), то ток в проводнике будет сосредоточен лишь в тонком поверхностном слое, толщина которого практически определяется глубиной проникновения волны. Такой поверхностный эффект называют ярко выраженным. Вытеснение тока приводит к увеличению активного сопротивления токопровода по сравнению с его значением при постоянном токе. Именно по этим причинам в высокочастотных установках индуктор выполняется в виде медной труб­ки, внутри которой для охлаждения пропускается жидкость.

Если глубина проникновения волны соизмерима с габаритными размерами, то проводник называют прозрачным и считают, что по сечению этого проводника ток распределяется практически равномерно.

Если в проводящем ферромагнетике замыкается переменный магнитный поток, то он также вытесняется на поверхность магнитопровода, в поверхностном слое возрастают магнитная индукция и напряженность, а это влечет за собой увеличение плотности вихревого тока и джоулевых потерь.

При магнитном поверхностном эффекте также вводится в рассмотрение глубина проникновения волны, и при условии, что Δ« d , эффект считается ярко выраженным. Явление магнитного поверхностного эффекта широко используется в электротермии, однако в электрических машинах, трансформаторах и других подобных установках проявление этого эффекта крайне нежелательно.

Электрический поверхностный эффект на примере шины прямоугольного сечения

На рис. 1 изображена шина прямоугольного сечения, обтекаемая током I. Поле в шине удовлетворяет уравнению Гельмгольца

Внутри шины существуют электромагнитное поле и ток проводимости. За пределами шины (удельная проводимость (γ=0) ток проводимости (δ=0) отсутствует, но электрическое и магнитное поля существуют. Так как внутреннее и внешнее электромагнитные поля взаимосвязаны, то при решении задачи о расчете поля внутри шины необходимо знать законы распределения поля и за ее пределами.

Таким образом, при строгом подходе нужно решать задачу о расчете поля во всем пространстве - внутри и за пределами шины.

Так как эта задача очень сложна для точного аналитического реше­ния, сформулируем такие условия и допущения, при которых задачу о поверхностном эффекте в шине можно будет решить приближенно с хорошей точностью. Сначала рассмотрим поле в круглом проводе (рис. 2).

Магнитные линии представляют собой концентрические окружности. В данном примере поток, обусловленный током в проводе, разделяется на две составляющие - внутренний и внешний. Это свойство круглого провода используется в инженерной практике при определении внутренней индуктивности провода. Как видно из рис. 3, при квадратном сечении провода такое четкое разграничение потоков сделать нельзя, так как контур сечения уже не является силовой линией.

Определим, какое влияние оказывает геометрия шины (h /2 a ) на распределение поля в ее объеме. Из рис. 4 следует, что по мере увеличения относительных размеров (h /2а) силовые линии внутри шины начинают принимать очертания, приближающиеся к форме внешнего контура шины. Если же отношение h /2 a » 1 (рис. 5), то практически во всем объеме шины вектор магнитной напряженности становится направленным вдоль большей боковой поверхности шины, т. с. в сторону координаты у.

Если теперь пренебречь краевыми эффектами, то для шины при h » 2 a возможно решение задачи в системе координат (х, у, z ) в предпо­ложении, что

,
,

,
.

Рис.4 Рис. 5

Поставим задачу: рассчитать распределе­ние поля Е и Н в объеме прямоугольной шины (рис. ПО) и вычислить ее комплекс­ное сопротивление синусоидальному току, если шина h/2a » 1 обтекается током I с частотой ω .

Рис. 6 Рис. 7

Параметры среды: μ , γ . Приня­тое допущение Ė=Ė x (z ) приводит к урав­нению Гельмгольца (индекс х в дальнейшем опустим) относительно вектора электричес­кой напряженности

, (5.34)

где
.

Решением уравнения (5.34) является совокупность экспоненциальных функций

, (5.35)

. (5-36)

Запишем общее решение для , используя второе уравнение Максвелла
. Поскольку в рассматриваемом случае
, то

. (5.37)

С учётом (5.35)

. (5.38)

Далее отыщем постоянные интегрирования С 1 и С 2 . Поскольку исследуемое поле обладает симметрией
, следовательно, из (5.35) имеем

Очевидно, что последнее равенство справедливо, если С 1 2 =С/2 .

Тогда с учётом условия симметрии выражения (5.35) и (5.38) будут иметь вид соответственно

, (5.39)

. (5.40)

Постоянная интегрирования С пропорциональна заданному в шине току I .

Выделим некоторый участок dS = hdz (рис. 7). Тогда

(5.41)

J n


.

Отсюда находим
. (5.42)

В итоге окончательное решение для Ė имеет вид:

. (5.43)

Подстановка (5.42) в (5.40) с уче­том (5.34) позволяет получить реше­ние для магнитной напряженности:

. (5.44)

Таким образом, (5.43) и (5.44) есть окончательные выражены для электрической и магнитной напряженностей и в объем шины.

Интерес представляет качественный анализ распределения плотности тока в объеме шины (рис.8). В соответствии с законом Ома
для плотности тока в шине имеем

.

Картина распределения δ(z ) , очевидно, будет зависеть от ко­эффициента распространения
.

Если на низких частотах па­раметр а/∆ мал (ра << 1) , то при малом аргументе shpz ≈1 , Shpa pa и тогда

Таким образом при этих условиях ток равномерно распределяется по шине и поверхностный эффект не проявляется. По мере роста частоты картина изменяет­ся, поскольку с ростом па­раметра (ра) увеличивает­ся неравномерность рас­пределения тока по сече­нию шины.

Свойства быстропеременных токов

Определение 1

Токами высокой частоты считают токи, которые имею частоту выше, чем $10000 Гц$. Для этих токов не выполняются условия квазистационарности. В процессе протекания такого тока по проводнику, в проводнике появляются вихревые токи, которые порождаются изменениями магнитного поля с высокой скоростью.

Изменения магнитного поля в проводнике происходят такие, что на его оси вихревой ток имеем направление встречное к основному току, а у поверхности проводника течение этого тока совпадает с направлением основного тока. Значит, ток высокой частоты имеет непостоянную плотность по поперечному сечению. Плотность тока в центре сечения проводника почти равна нулю. Она увеличивается при движении в направлении к наружной поверхности. При очень высокой частоте ток течет по тонкому наружному слою проводника.

Сейчас токи высокой частоты широко применяются. Высокочастотные плавильные печи применяют для быстрого прогрева металлических тел. С помощью высокочастотных токов проводят закаливание стальных деталей. Объект на короткое время размещают внутри катушки с током высокой частоты. Поверхностный слой детали разогревается вихревыми токами, ее внутренность при этом остается холодной. Деталь вынимают из катушки, внутренняя часть быстро отнимает тепло у поверхностного слоя, поверхность быстро охлаждается и закаляется. Глубину прогрева регулируют временем выдержки детали в катушке и частотой тока. После такой процедуры поверхность детали становится твердой и прочной, внутри металл сохраняет упругость и пластичность.

Скин --эффект

Определение 2

Постоянный ток по поперечному сечению проводника распределяется равномерно. У переменного тока из-за индукционного взаимодействия разных элементов тока проходит перераспределение плотности тока по поперечному сечению проводника. Явление, при котором ток преимущественно сосредотачивается в поверхностном слое проводника, называется скин-эффектом .

Пусть мы имеем цилиндрический проводник, по которому течет ток. Вокруг проводника с током образуется магнитное поле. Силовые линии этого поля -- концентрические окружности, центр которых лежит на оси проводника. Если силу тока увеличить, то повысится индукция магнитного поля, но форма силовых линий не изменится. Соответственно, производная $\frac{\partial \overrightarrow{B}}{\partial t}$ направлена по касательной к линии индукции магнитного поля, линии производной также -- окружности, которые совпадают с силовыми линиями. Мы знаем из закона электромагнитной индукции, что:

Вектор напряженности индукционного поля в областях расположенных ближе к оси проводника имеет направление противоположное вектору напряженности электрического поля, которое создает ток, в дальних областях направления этих векторов совпадают. В результате плотность тока уменьшается около оси и увеличивается ближе к поверхности проводника, то есть появляется скин-эффект.

В металлах в виду их высокой проводимости током смещения можно пренебречь в сравнении с током проводимости. Из-за чего проникновение магнитного поля в металл аналогично процессу диффузии в математическом отношении. За основу возьмем уравнение (1) и уравнение (2):

Используем закон Ома:

приравняем правые части выражений (2) и (3) и продифференцируем полученное выражение, в результате имеем:

Или учитывая формулу (1):

Используем известные соотношения:

окончательно получим:

Если ток течет по однородному бесконечному проводнику, который занимает полупространство y$>$0 вдоль оси X, причем поверхность проводника плоская, и можно записать:

В таком случае уравнение (7) преобразуется к виду:

Можно предположить, что:

Подставив выражение (11) в уравнение (10) получим:

Решением уравнения (12) является функция:

где $\alpha =\sqrt{\frac{\omega \sigma {\mu }_0\mu }{2}}$. Возьмем действительную часть выражения (13) и перейдем к плотности тока, используя закон Ома, получим:

Толщина скин-слоя

Объёмная плотность тока максимальна у поверхности проводника. На расстоянии $\triangle =\frac{1}{\alpha }\ \ от\ поверхности\ $она становится в e раз меньше. Почти весь ток находится в $\triangle $ слое, который называют толщиной скин -- слоя. Толщина скин - слоя равна:

При высокой частоте тока толщина скин - слоя весьма мала.

Пример 1

Задание: Во сколько раз уменьшится толщина скин -- слоя меди, если ${\omega }_1={10}^4с^{-1}$, а ${\omega }_2={10}^6с^{-1}$.

Решение:

Толщина скин -- слоя проводника рассчитывается по формуле:

\[\triangle =\sqrt{\frac{2}{\sigma \mu {\mu }_0\omega }}\left(1.1\right).\]

Если дважды записать выражение (1.1) для разных частот тока, то получим:

\[\frac{{\triangle }_1}{{\triangle }_2}=\sqrt{\frac{{\omega }_2}{{\omega }_1}}\left(1.2\right).\]

Проведем вычисления:

\[\frac{{\triangle }_1}{{\triangle }_2}=\sqrt{\frac{{10}^6}{{10}^4}}=10.\]

Ответ: Толщина уменьшится в 10 раз.

Пример 2

Задание: Почему при высокой частоте тока можно убрать проводящий материал из цилиндрической области внутри проводника и оставить только проводящую оболочку?

Решение:

Как было показано в предыдущем примере, с увеличением частоты тока, глубина слоя в котором распространяется ток, становится очень небольшой. То есть ток течет лишь в малой части поперечного сечения проводника около его поверхности (скин - эффект). Следовательно, ничего не изменится, если убрать проводящий материал из цилиндрической области внутри проводника и оставить только цилиндрическую оболочку толщиной скин -- слоя. Если проводник толстый, а частота его невелика, то ток течет по всему поперечному сечению и только немного ослабевает к оси провода. Так, при технической частоте в $50 Гц$ скин -- эффект в обычных проводниках выражается очень слабо.

) — явление затухания электромагнитных волн по мере их проникновения в проводящую среду.

Описание

Переменное во времени электрическое поле и связанное с ним магнитное поле не проникают в глубь , а сосредоточены в основном в относительно тонком приповерхностном слое (так называемом скин-слое). Происхождение скин-эффекта объясняется тем, что под действием внешнего переменного поля в проводнике свободные электроны создают токи, поле которых компенсирует внешнее поле в объеме проводника (скин-эффект проявляется у металлов, в плазме, ионосфере, вырожденных полупроводниках и других средах с достаточно большой проводимостью).

Глубина скин-слоя существенно зависит от проводимости, частоты электромагнитного поля и от состояния образца. На малых частотах толщина скин-слоя достаточно велика, убывает с ростом частоты и для металлов на частотах оптического диапазона оказывается сравнимой с длиной волны (столь малым проникновением электромагнитного поля и почти полным его отражением объясняется металлический блеск хороших проводников). Например, толщина скин-слоя для медного проводника при частоте электромагнитного поля в 50 Гц (стандартная частота для «городского» тока) составляет примерно 1 см, при частоте 5 кГц - примерно 0,1 см, а при частоте 0,5 МГц - примерно 10 мкм.

Иногда имеют место ситуации, когда длина свободного пробега электронов превышает толщину скин-слоя, в этом случае говорят об аномальном скин-эффекте (он наблюдается в СВЧ-диапазоне в чистых металлах при низкой температуре) - при таком эффекте рассеяние электронов на поверхности образца мало сказывается на толщине скин-слоя (здесь существенную роль играют электроны с малыми углами скольжения, для которых отражение близко к зеркальному).

При достаточно высоких значениях напряженности переменного электромагнитного поля, когда параметры среды, например проводимость, начинают зависеть от поля, скин-эффект становится нелинейным, т. е. толщина скин-слоя также начинает зависеть от интенсивности электромагнитного поля (наиболее легко нелинейный скин-эффект реализуется в плазме). Пороговые значения амплитуд электромагнитного поля, при которых происходит переход скин-эффекта в нелинейный, зависят от параметров среды и частот.

Автор

  • Разумовский Алексей Сергеевич

Источник

  1. Скин-эффект // Физический энциклопедия / Гл. ред. А.М. Прохоров. Т. 4. - М.: Большая Российская энциклопедия, 1992. С. 541–543.

На высоких частотах ток, протекающий через проводник, распределяется по его сечению неравномерно. Под действием сильных магнитных полей переменного тока происходит «выталкивание» тока от центра проводника к его поверхности (скин-эффект ). В результате ток протекает по меньшей площади поперечного сечения, что выглядит как уменьшение диаметра провода. Чем выше частота, тем меньше толщина поверхностного слоя (скин-слоя ), по которому течет ток, и тем больше сопротивление проводника протекающему току. Глубина скин-слоя определяется как расстояние ниже поверхности, где плотность тока падает на 1/e от значения на поверхности (e - основание натурального логарифма).

Для минимизации потерь, возникающих из-за скин-эффекта , применяются проводники особой конструкции, которые состоят из большого числа тонких жил, изолированных одна от другой. Жилы переплетены между собой так, что каждая проходит по поверхности и в любом месте поперечного сечения на всём протяжении провода; это усредняет импеданс каждой жилы, в результате чего в них протекают равные токи. В таком проводнике, называемымлитцендратом (нем.Litzen - пряди иDraht - провод), ток течет по поверхности каждой жилы, в результате рабочая площадь поперечного сечения проводника значительно увеличивается, а сопротивление токам высокой частоты уменьшается.

Как правило, при проектировании устройств, требующих применения литцендрата, значения рабочей частоты и тока в проводнике известны заранее. Поскольку главное преимущество литцендрата заключается в уменьшении сопротивления переменному току по сравнению с одножильным проводом эквивалентного сечения, основным параметром, который учитывается при выборе конструкции и сечения провода, является рабочая частота. В таблице 1 показана зависимость соотношения между сопротивлениями переменному току и постоянному току (коэффициент H) от коэффициента X для одиночного изолированного проводника круглого сечения:

Таблица 1.

где: d – диаметр провода, мм, f – частота, МГц.

Из Таблицы 1 и другой эмпирической информации была получена Таблица 2, в которой приведены рекомендуемые диаметры единичной жилы изолированной жилы многожильного провода в зависимости от рабочей частоты.

Таблица 2.

Активное

Коэффициент

сопротивление

изоляции,

жилы, Ом/м

60 Гц…1 кГц

100…200 кГц

200…350 кГц

350…850 кГц

850…1,4 МГц

1,4…2,8 МГц

После выбора диаметра жилы соотношение между сопротивлениями переменному и постоянному току идеального литцендрата, т.е. такого, в котором каждая жила последовательно «пронизывает» каждую точку площади поперечного сечения, может быть определено по следующей формуле:

H +K

где: H – коэффициент из Таблиц 1 и 2,

G - коэффициент поправки на вихревые токи, определяемый по формуле:

N – количество жил в кабеле, d1 – диаметр жилы, мм,

d0 – диаметр жгута, мм, f – частота, Гц,

K – постоянная, зависящая от количества жил в кабеле, определяется по следующей таблице:

Таблица 3.

Сопротивление многожильного кабеля постоянному току зависит от следующих факторов:

1. сечения жилы,

2. количества жил,

3. коэффициента удлинения одиночной жилы по сравнению с единицей длины жгута, возникающего как результат плетения жил. Типичными считаются значения 1,5% для каждого порядка операции плетения жил в жгут и 2,5% для

каждого порядка операции скручивания жгутов в кабель.

Следующая формула позволяет определить сопротивление постоянному току литцендрата любой конструкции:

R (1.015) N B

(1.025) N C

где: RS – сопротивление единичной жилы, Ом (см. таблицу 2), NB – количество порядков операции плетения в жгут,

NC – количество порядков операции скручивания жгутов в кабель, NS – общее количество жил в кабеле.

Рис.1. Литцендрат 1-го типа

Рис.2. Литцендрат 2-го типа

Пример 1 . Рассчитаем сопротивления провода типа 2 (см. Рис.2), состоящего из 450 жил диаметром 0,079 мм на частоте 100 кГц. Данный провод производится путём свивания пяти жгутов (скручивание жгутов в кабельпервого порядка), каждый их которых, в свою очередь, получен свиванием трёх жгутов (плетениевторого порядка), сформированных из

30 жил диаметром 0,079 мм (плетение первого порядка).

1. Определим активное сопротивление провода по формуле (4):

R = 3780.5* (1.015 ) 2 (1.025 ) 1 = 8.87 Ом / км ,

2. Вычисляем отношение R AC при помощи формулы (2):

1.0000+ 2*

*(7.877 *10− 5 ) = 1.035 ,

Преимущество литцендрата становится очевидным при сравнении с круглым проводом диаметром 1,67 мм, имеющим эквивалентную площадь сечения. Активное сопротивление одножильного провода составит порядка 7,853 Ом/км, однако на частоте 100 кГц соотношение между сопротивлениями переменному и постоянному току возрастает примерно до 21,4; таким образом, сопротивление переменному току составит

Пример 2 . Рассчитаем сопротивления провода типа 2 (см. Рис.2), состоящего из 1260 жил диаметром 0,100 мм на частоте 66 кГц. Этот провод образован из семи жгутов (скручивание жгутов в кабельпервого порядка), каждый их которых, в свою очередь, получен свиванием шести жгутов (плетениевторого порядка), сформированных из 30 жил диаметром 0,100 мм (плетениепервого порядка).

1. Определим активное сопротивление провода по формуле (4):

2176.5*(1.015) 2 (1.025) 1

1.824Ом /км ,

2. Вычисляем отношение

при помощи формулы (2):

1.0000+ 2*

*(8.81*10− 5 ) = 1.124 ,

Одножильный провод диаметром 3,55 мм имеет такую же площадь поперечного сечения, но очевидно, что при глубине скин-слоя, равного 0,257 мм, такой провод можно рассматривать как тонкостенный цилиндр с толщиной стенки, равной глубине скин-слоя.

По материалам фирмы New England Wire

Скин-эффект (от англ. skin - кожа, оболочка)

поверхностный эффект, затухание электромагнитных волн по мере их проникновения в глубь проводящей среды, в результате которого, например, переменный ток по сечению проводника или переменный магнитный поток по сечению магнитопровода распределяются не равномерно, а преимущественно в поверхностном слое. С.-э. обусловлен тем, что при распространении электромагнитной волны в проводящей среде возникают Вихревые токи , в результате чего часть электромагнитной энергии преобразуется в теплоту. Это и приводит к уменьшению напряжённостей электрического и магнитного полей и плотности тока, т. е. к затуханию волны.

Чем выше частота ν электромагнитного поля и больше магнитная проницаемость μ проводника, тем сильнее (в соответствии с Максвелла уравнения ми) вихревое электрическое поле, создаваемое переменным магнитным полем, а чем больше проводимость а проводника, тем больше плотность тока и рассеиваемая в единице объёма мощность (в соответствии с законами Ома и Джоуля - Ленца). Т. о., чем больше ν, μ и σ, тем сильнее затухание, т. е. резче проявляется С.-э.

В случае плоской синусоидальной волны, распространяющейся вдоль оси х в хорошо проводящей, однородной, линейной среде (токами смещения по сравнению с токами проводимости можно пренебречь), амплитуды напряжённостей электрического и магнитного полей затухают по экспоненциальному закону:

Коэффициент затухания, μ 0 -Магнитная постоянная . На глубине х = δ = 1/α амплитуда волны уменьшается в е раз. Это расстояние называется глубиной проникновения или толщиной скин-слоя. Например, при частоте 50 гц в меди (σ = 580 ксим/см; μ = 1) σ = 9,4 мм, в стали (α = 100 ксим/см, = 1000) δ = 0,74 мм. При увеличении частоты до 0,5 Мгц δ уменьшится в 100 раз. В идеальный проводник (с бесконечно большой проводимостью) электромагнитная волна вовсе не проникает, она полностью от него отражается. Чем меньше расстояние, которое проходит волна, по сравнению с δ, тем слабее проявляется С.-э.

Для проводников при сильно выраженном С.-э., когда радиус кривизны сечения провода значительно больше δ и поле в проводнике представляет собой плоскую волну, вводят понятие поверхностного сопротивления проводника Z s (поверхностного импеданса). Его определяют как отношение комплексной амплитуды (См. Комплексная амплитуда) падения напряжения на единицу длины проводника к комплексной амплитуде тока, протекающего через поперечное сечение скин-слоя единичной длины. Комплексное сопротивление на единицу длины проводника:

где R 0 - активное сопротивление проводника, определяющее мощность потерь в нём, X 0 - индуктивное сопротивление, учитывающее индуктивность проводника, обусловленную магнитным потоком внутри проводника, l c - периметр поперечного сечения скин-слоя, ω = 2πν; при этом R 0 = X 0 . При сильно выраженном С.-э. поверхностное сопротивление совпадает с волновым сопротивлением (См. Волновое сопротивление) проводника и, следовательно, равно отношению напряжённости электрического поля к напряжённости магнитного поля на поверхности проводника.

В тех случаях, когда длина свободного пробега l носителей тока становится больше толщины δ скин-слоя (например, в очень чистых металлах при низких температурах), при сравнительно высоких частотах С.-э. приобретает ряд особенностей, благодаря которым он получил название аномального. Поскольку поле на длине свободного пробега электрона неоднородно, ток в данной точке зависит от значения электрического поля не только в этой точке, но и в её окрестности, имеющей размеры порядка l Поэтому при решении уравнений Максвелла вместо закона Ома приходится использовать для вычисления тока кинетическое уравнение Больцмана. Электроны при аномальном С.-э. становятся неравноценными с точки зрения их вклада в электрический ток; при l >> δ основной вклад вносят те из них, которые движутся в скин-слое параллельно поверхности металла или под очень небольшими углами к ней и проводят, т. о., больше времени в области сильного поля (эффективные электроны). Затухание электромагнитной волны в поверхностном слое по-прежнему имеет место, но количественные характеристики у аномального С.-э. несколько иные. Поле в скин-слое затухает не экспоненциально (R 0 /X 0 =

В инфракрасной области частот электрон за период изменения поля может не успеть пройти расстояние l. При этом поле на пути электрона за период можно считать однородным. Это приводит опять к закону Ома, и С.-э. снова становится нормальным. Т. о., на низких и очень высоких частотах С.-э. всегда нормальный. В радиодиапазоне в зависимости от соотношений между / и δ могут иметь место нормальный и аномальный С.-э. Всё сказанное справедливо, пока частота со меньше плазменной: ω ne2/m ) 1/2 (n - концентрация свободных электронов, е - заряд, m - масса электрона) (относительно более высоких частот см. ст. Металлооптика).

С.-э. часто нежелателен. В проводах переменный ток при сильном С.-э. протекает главным образом по поверхностному слою; при этом сечение провода не используется полностью, сопротивление провода и потери мощности в нём при данном токе возрастают. В ферромагнитных пластинах или лентах магнитопроводов трансформаторов, электрических машин и других устройств переменный магнитный поток при сильном С.-э. проходит главным образом по их поверхностному слою; вследствие этого ухудшается использование сечения магнитопровода, возрастают намагничивающий ток и потери в стали. «Вредное» влияние С.-э. ослабляют уменьшением толщины пластин или ленты, а при достаточно высоких частотах - применением магнитопроводов из магнитодиэлектриков (См. Магнитодиэлектрики).

С др. стороны, С.-э. находит применение в практике. На С.-э. основано действие электромагнитных экранов. Так для защиты внешнего пространства от помех, создаваемых полем силового трансформатора, работающего на частоте 50 гц, применяют экран из сравнительно толстой ферромагнитной стали; для экранирования катушки индуктивности, работающей на высоких частотах, экраны делают из тонкого слоя Al. На С.-э. основана высокочастотная поверхностная закалка стальных изделий (см. Индукционная нагревательная установка).

Лит.: Нетушил А. В., Поливанов К. М., Основы электротехники, т. 3, М., 1956; Поливанов К. М., Теоретические основы электротехники, ч. 3 - Теория электромагнитного поля, М., 1975; Нейман Л. Р., Поверхностный эффект в ферромагнитных телах, Л. - М., 1949. См. также лит. при ст. Металлы .

И. Б. Негневицкий.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Скин-эффект" в других словарях:

    - (поверхностный эффект) эффект уменьшения амплитуды электромагнитных волн по мере их проникновения вглубь проводящей среды. В результате этого эффекта, например, переменный ток высокой частоты при протекании по проводнику распределяется… … Википедия

    - (от англ. skin кожа, оболочка) (поверхностный эффект), затухание эл. магн. волн по мере их проникновения в глубь проводящей среды, в результате к рого, напр., перем. ток по сечению проводника или перем. магн. поток по сечению магнитопровода… … Физическая энциклопедия

    - (англ. skin кожа, оболочка + аффект) поверхностный эффект 1) явление протекания тока высокой частоты не по всему сечению сплошного проводника, а преимущ. по его поверхностному слою (электрический скин эффект); примен., напр., при поверхностной… … Словарь иностранных слов русского языка

    - (от англ. skin кожа, оболочка) (поверхностный эффект), неоднородное распределение переменного тока и связанного с ним электромагнитного поля по сечению проводника. При достаточно высоких частотах ток течёт в основном в тонком поверхностном слое… … Энциклопедический словарь

    - (от англ. skin кожа оболочка), (поверхностный эффект), неоднородное распределение переменного тока и связанного с ним электромагнитного поля по сечению проводника. При достаточно высоких частотах ток течет в основном в тонком поверхностном слое… … Большой Энциклопедический словарь

    Скин эффект, скин эффекта … Орфографический словарь-справочник

    Сущ., кол во синонимов: 1 эффект (29) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов