Система калибровки измерительных каналов асу тп. Поверка и калибровка средств информационно-измерительных и управляющих систем (измерительных каналов ИИС и АСУ ТП) Протокол калибровки вторичной части измерительных каналов

Материал посвящен важному аспекту метрологического обеспечения готовых систем автоматизации - калибровке измерительных каналов (ИК) АСУ ТП, а именно: проблеме повышения эффективности калибровочных работ и снижению их трудоемкости за счет более эффективного метода калибровки.



Создаваемые сегодня современные автоматизированные системы управления технологическими процессами (АСУ ТП) крупных объектов теплоэнергетики характеризуются высокой сложностью и степенью ответственности. Программно- технические комплексы (ПТК), составляющие основу АСУ ТП, должны не только обеспечивать реализацию всех необходимых сегодня функций контроля, измерения и регулирования технологических параметров, но быть удобными и технологичными в эксплуатации и сопровождении. Одним из важных видов сопровождения готовых автоматизированных систем является метрологическое сопровождение.

Не секрет, что метрологические вопросы являются самыми “больными” и “нелюбимыми” как для многих поставщиков ПТК, так и для эксплуатационных служб. Нередко вопросы метрологии вообще игнорируются, особенно в связи с внедрением микропроцессорных систем управления. Правда, такой способ решения требует определенной лояльности со стороны органов стандартизации и метрологии. В противном случае, проблемы в решении метрологических задач могут обернуться серьезными проблемами и значительными производственными и экономическими потерями.

Используя опыт внедрения АСУ ТП и их сопровождения, компания “ ” разработала комплексный подход к созданию современных систем на генерирующих объектах энергетики. Совместно с ведущими проектными и технологическими организациями компания осуществляет все необходимые исследовательские и инжиниринговые работы. Особое внимание уделяется метрологическому обеспечению поставляемых автоматизированных систем управления.

Необходимые метрологические работы выполняются на каждом этапе жизненного цикла АСУ ТП. На этапе технического задания формируются требования к метрологическому обеспечению разрабатываемой системы, на стадии технического проекта разрабатываются перечни измерительных каналов (ИК), определяются требования к точности выполнения измерений, выбираются средства измерений для формирования ИК, обеспечивающие требуемую точность, и также подбираются рабочие эталоны, с помощью которых можно подтвердить заданную точность измерения. На этапе подготовки рабочей документации выполняется согласование с Заказчиком применения утвержденных Госстандартом РФ методик поверки (калибровки) измерительных каналов.

На стадии ввода АСУ ТП в действие осуществляется комплекс метрологических работ в соответствии с нормативными документами.

На этапе пусконаладочных работ осуществляется монтаж и наладка измерительных каналов системы, на этапе предварительных испытаний наладочная организация совместно с персоналом эксплуатирующей организации выполняет приемку ИК из наладки в опытную эксплуатацию с целью проверки соответствия ИК и готовности к вводу в эксплуатацию. Все измерительные каналы системы подвергаются первичной поверке или калибровке.

На этапе приемочных испытаний могут быть проведены испытания с целью “сертификации соответствия” ИК, либо испытания с целью утверждения типа. И, наконец, в промышленной эксплуатации осуществляется периодическая поверка или калибровка измерительных каналов АСУ ТП.

Являющиеся основой для создаваемых АСУ ТП, разработаны в соответствии с нормативными документами РФ и относятся к изделиям Государственной системы приборов. ПТК “Торнадо” занесены в Государственный реестр и имеют сертификат об утверждении типа средств измерений.

Разработанные метрологической службой компании методики поверки (калибровки) измерительных каналов АСУ ТП и измерительных модулей, входящих в состав программно-технического комплекса, согласованы Всероссийским НИИ метрологии и стандартизации (ВНИИМС).

Помимо необходимых документов и аппаратного обеспечения, компания предлагает Заказчикам специализированное ПО “АРМ метролога” (собственная разработка компании), которое является составной частью ПО ПТК “Торнадо” и позволяет осуществлять калибровку измерительных каналов АСУ ТП в автоматизированном режиме.

Разработанные методики калибровки измерительных каналов АСУ ТП поставляются в комплекте со специализированным программным и аппаратным обеспечением. На наш взгляд, этот способ является одним из наиболее оптимальных для решения метрологических вопросов при внедрении АСУ ТП. Однако уже сегодня специалисты компании работают над проблемой сокращения трудозатрат на калибровку ИК, поставляемых заказчику АСУ ТП. По существующему в настоящее время методу в процессе калибровки каналов АСУ ТП на объекте участвуют как минимум два человека. Один из них находится на стационарном рабочем месте инженера АСУ ТП или метролога и работает с программой “АРМ метролога”. Второй должен находиться у соединительных коробок, чтобы с помощью генератора эталонных сигналов подавать эталонный сигнал в месте подключения первичного преобразователя (датчика). Оба калибровщика должны быть снабжены рациями, чтобы согласовывать свои действия. После того, как введены исходные данные о канале, задано количество сечений диапазона измерения, в которых будет осуществляться сбор измеренных значений, программа определяет значение эталонного сигнала и подсказывает, в какой момент этот сигнал можно подавать на вход ИК. Эту информацию калибровщик, работающий за компьютером, должен передать коллеге, который находится на объекте (рис. 1).

Рис. 1. Один из существующих методов калибровки ИК АСУ ТП

Таким образом, существующая методика реализует традиционный (с использованием средств ВТ и специализированного ПО) метод калибровки (поверки), который имеет ряд недостатков:

Большие временные затраты (на калибровку каждого канала необходимо 10-15 минут без учета времени, затрачиваемого на подключение задатчика эталонного сигнала);

Необходимость участия в процессе калибровки двух человек;

Возможность ошибочной информации;

Ручное управление задатчиком;

Передача информации ведется по рации.

Недостаток пользовательского интерфейса стационарного АРМ метролога - потребность в ручном внесении настроек процесса, при поверке каждого канала (класса точности канала, сечений диапазона измерений, единиц измерения и др.).

Принципиальным недостатком существующей методики калибровки ИК является то, что калибровщик, работающий на объекте, постоянно занят в процессе калибровки и не может отвлечься на работу по подготовке следующего канала в момент калибровки текущего канала. То есть, по существующей методике калибровщик работает строго последовательно - подготовка канала для калибровки (5-10 мин), калибровка (10-15 мин), восстановление канала (5-10 мин). Итого, весь процесс занимает в среднем 30 минут на один канал. Таким образом, за одну смену можно провести калибровку 10-15 каналов. Если учесть, что все эти работы проводятся дневным персоналом, а объем ИК, подлежащих калибровке на энергоблоке 200 МВт, составляет порядка 2000, то на калибровку всех ИК потребуется от 6 до 9 месяцев! Это, конечно, если все честно делать.

Поэтому если есть лазейки, и есть возможность не делать, то в подавляющем большинстве случаев метрологией, как таковой, никто и не занимается - ни поставщик АСУ ТП, ни эксплуатационные службы.

Как уже было сказано, ПТК “Торнадо” имеет в своем составе комплексное решение метрологических задач, но, к сожалению, трудоемкость этих работ остается высокой. И специалисты компании на собственном опыте поняли, что необходимо в корне изменить ситуацию и снизить трудоемкость калибровочных работ.

Для создания более эффективного метода калибровки, не имеющего недостатков предшествующей системы и способного значительно повысить эффективность работы специалиста-калибровщика за счет большей автоматизации процесса сбора измерительной информации и обработки результатов, специалистам компании необходимо было провести ряд теоретических и исследовательских работ:

Разработка нового метода калибровки;

Анализ необходимого аппаратного обеспечения и выбор оборудования;

Разработка оптимальной архитектуры новой системы калибровки;

Просчет и создание тестовой модели мобильного АРМ метролога;

Разработка операторского интерфейса для мобильного и стационарного АРМ;

Разработка новых протоколов связи.

После проведения работ специалисты компании пришли к идее применения беспроводных технологий связи для организации проведения калибровочных работ.

Разработка нового метода калибровки

Разработанный метод предполагает последовательное выполнение следующих операций:

Отключение датчика и подключение генератора эталонных сигналов к входу измерительного канала;

Выбор канала по его коду или наименованию на мобильном АРМ метролога. При этом, с мобильного АРМ посылается запрос на стационарный АРМ, на котором из базы данных или из перечня ИК выбирается вся необходимая информация об этом канале: диапазон измерения, класс точности канала, сведения о датчике, измерительном модуле и другая информация, необходимая для организации процесса калибровки и для внесения в сертификат;

Запуск автоматической процедуры сбора измеренных значений и статистической обработки выборки;

Мониторинг процесса калибровки, просмотр результатов.

В ходе автоматического выполнения процесса калибровки у калибровщика есть возможность следить на мобильном АРМ за текущим измеренным значением, за отклонением этого значения от эталонного, за переключением генерируемых значений. Также имеется возможность просмотреть протокол калибровки и сертификат на канал.

Выбор оборудования

Специалистами компании были изучены специфические особенности процесса калибровки ИК на крупных промышленных объектах и сформулированы основополагающие критерии для определения состава технических средств новой системы:

Дальность связи и скоростные характеристики. При выборе средств беспроводной связи важным критерием являются дальность связи и скоростные характеристики. Данный критерий напрямую связан с конструктивными особенностями промышленного объекта, а именно: геометрией помещений, наличием металлических конструкций, наличием помех.

Натурные испытания новой системы проводились на Новосибирской ТЭЦ-5;

Совместимость физических интерфейсов. Следует учесть, что все устройства должны быть совместимы друг с другом на уровне физических интерфейсов, а также быть поддерживаемыми на уровне операционных систем (ОС);

Вес и размеры используемых компонентов. Все устройства, входящие в мобильный АРМ, должны отвечать требованиям мобильности и удобства эксплуатации. То есть иметь минимальный вес и размеры для беспрепятственного перемещения специалиста-калибровщика по объекту вместе с мобильным АРМ;

Оптимальность электропитания. Низкое энергопотребление, мобильность, возможность использования общего автономного источника питания;

Экономичность внедрения. Требование касается приемлемой стоимости и целесообразности внедрения на объекте, при соблюдении всех вышеописанных критериев.

Разработка архитектуры системы

Рис. 2. Общая структура системы калибровки ИК АСУ ТП

Структура распределенной системы калибровки измерительных каналов была определена с учетом специфики проведения калибровки измерительных каналов на крупных промышленных объектах. В основу системы положена идея применения беспроводных технологий связи, мобильного компьютера и управляемого от него генератора эталонного сигнала. К компьютеру стационарного АРМ подключается радиомодем (рис. 2), в программу стационарного АРМ вносятся необходимые изменения для работы ее в режиме удаленного управления мобильным АРМ.

В состав мобильного АРМ метролога входят:

1_карманный персональный компьютер (КПК), который выполняет две функции:

Удаленный интерфейс к стационарному АРМ метролога;

Передача заданий, полученных от стационарного АРМ метролога программируемому задатчику.

2_Программируемый задатчик, с помощью которого формируется калибровочный сигнал на входе канала.

3_Блок для обеспечения беспроводной связи КПК со стационарным АРМ.

4_Средства, обеспечивающие питание радиомодема и генератора аналоговых сигналов.

Создание тестовой модели мобильного АРМ метролога

После проведенных испытаний и анализа сравнительных характеристик ряда промышленных ноутбуков и карманных персональных компьютеров в качестве компьютера тестовой модели АРМ решено было использовать КПК.

В качестве блока для обеспечения беспроводной связи КПК со стационарным АРМ в испытательной модели мобильного АРМ метролога был использован радиомодем с питанием модема от аккумуляторной батареи 12 В.

В отличие от устройств WI-FI, работающими на частотах 2400 - 2483.5 МГц, радиомодем работает на частоте 433.92 МГц и оптимально подходит для промышленных объектов, таких как ТЭЦ.

Рис. Подключение задатчика к КПК

Радиоволны частоты 433 МГц лучше огибают металлические конструкции типичных (для промышленного предприятия) размеров. В условиях цеха металлические конструкции частично огибаются радиоволнами, частично волна попадает за препятствия за счет отражений.

Пространственное затухание радиоволн на низких частотах меньше. Используемый радиомодем специально приспособлен для работы в условиях импульсных помех, так как в нем использовано каскадное кодирование с перемежением, эффективно исправляющее ошибки при передаче данных.

В качестве программируемого задатчика, с помощью которого формируется эталонный сигнал на входе канала, был использован программируемый калибратор-измеритель унифицируемых сигналов ИКСУ 2000. Достоинством данного задатчика является его высокий класс точности, что позволяет использовать его не только для калибровки ИК, но и измерительных модулей ПТК, класс точности которых существенно выше.

Задатчик обладает малым весом и габаритами. Предусмотрена возможность программирования калибратора через интерфейс RS232. Работа калибратора может осуществляться при питании от аккумулятора на 12В, это делает возможным использование одного источника для питания калибратора и радиомодема.

Калибратор ИКСУ 2000 подключается к КПК через кабель.

Использование устройства ИК-RS232 (инфракрасный порт - RS232), как одного из составляющих мобильного АРМ, было определено исходя из потребности в управлении двумя устройствами с КПК. Это дало возможность использования его как прозрачный канал связи ИК-RS232 и питания от подключаемого устройства через интерфейс RS232.

Радиомодем соединяется с КПК через ИКпорт-RS232.

Таким образом, все компоненты мобильного АРМ свободно размещаются в объеме 350x250x100 мм и имеют общий вес не более 2,5 кг.

Результаты проведенных работ

В результате проведенных работ была создана тестовая модель работающей системы (включающей мобильный АРМ и программу стационарного АРМ) для калибровки измерительных каналов различных типов. В ПО стационарного АРМ были внесены все необходимые изменения для работы в режиме удаленного управления.

Ряд испытаний, проведенных на ТЭЦ-5 ОАО “Новосибирскэнерго”, показали, что:

В процессе калибровки при использовании новой распределенной системы калибровки измерительных каналов достаточно участие только одного человека, оснащенного мобильным АРМ метролога. Все управление задатчиком полностью ложится на программу стационарного АРМ, что исключает погрешности, связанные с установкой прибора. Инструкции поступают через беспроводную связь в программу, установленную на мобильном АРМ, которая и управляет калибратором. Управление всем процессом ведется с мобильного АРМ также через беспроводное соединение;

В функции калибровщика - координатора мобильного АРМ входят: запуск процесса и выбор кода канала (необходимая инициализация производится на стационарном АРМ); визуальное наблюдение за ходом процесса посредством интерфейса ПО мобильного АРМ, который отображает текущий этап калибровки, значения текущих погрешностей измерений, выставляемые значения на задатчике. Калибровщик имеет возможность в любой момент остановить процесс калибровки или начать процедуру с самого начала;

Название документа:
Номер документа: 8.596-2002
Вид документа: ГОСТ Р
Принявший орган: Госстандарт России
Статус: Действующий
Опубликован: официальное издание
Дата принятия: 30 сентября 2002
Дата начала действия: 01 марта 2003

ГОСТ Р 8.596-2002

Группа Т80

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственная система обеспечения единства измерений

МЕТРОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ИЗМЕРИТЕЛЬНЫХ СИСТЕМ

Основные положения

State system for ensuring the uniformity of measurements.
Metrological assurance for measuring systems. Main principles

ОКС 17.020
ОКСТУ 0008

Дата введения 2003-03-01

Предисловие

1 РАЗРАБОТАН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский институт метрологической службы" (ФГУП ВНИИМС) Госстандарта России

2 ВНЕСЕН Управлением метрологии Госстандарта России

3 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 30 сентября 2002 г. N 357-ст

4 ВЗАМЕН МИ 2438-97

1 Область применения

1 Область применения

Настоящий стандарт устанавливает основные положения по метрологическому обеспечению измерительных систем (далее - ИС) на этапах их жизненного цикла: разработка (проектирование), производство (изготовление, монтаж и наладка на объекте эксплуатации), эксплуатация.

Стандарт распространяется на ИС:

- выпускаемые изготовителем как законченные укомплектованные (за исключением, в ряде случаев, линий связи и электронных вычислительных машин) изделия, для установки которых на месте эксплуатации достаточно указаний, приведенных в эксплуатационной документации, в которой нормированы метрологические характеристики измерительных каналов системы (далее - ИС-1);

- проектируемые для конкретных объектов (группы типовых объектов) из компонентов ИС, выпускаемых, как правило, различными изготовителями, и принимаемые как законченные изделия непосредственно на объекте эксплуатации. Установку таких ИС на месте эксплуатации осуществляют в соответствии с проектной документацией на ИС и эксплуатационной документацией на ее компоненты, в которой нормированы метрологические характеристики, соответственно, измерительных каналов ИС и ее компонентов (далее - ИС-2).

Перечисленные виды ИС могут быть использованы как автономно, так и в составе более сложных структур (информационно-измерительных систем; систем контроля, диагностирования, распознавания образов, испытательного оборудования, а также автоматических систем управления технологическими процессами). В таких сложных структурах измерительная система может быть выделена на функциональном уровне.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8.009-84 Государственная система обеспечения единства измерений. Нормируемые метрологические характеристики средств измерений

ГОСТ 8.207-76 Государственная система обеспечения единства измерений. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Основные положения

ГОСТ 8.256-77 Государственная система обеспечения единства измерений. Нормирование и определение динамических характеристик аналоговых средств измерений. Основные положения

ГОСТ 34.201-89 Информационная технология. Комплекс стандартов на автоматизированные системы. Виды, комплектность и обозначение документов при создании автоматизированных систем

ГОСТ 34.601-90 Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Стадии создания

ГОСТ 34.602-89 Информационная технология. Комплекс стандартов на автоматизированные системы. Техническое задание на создание автоматизированной системы

ГОСТ 27300-87 Информационно-измерительные системы. Общие требования, комплектность и правила составления эксплуатационной документации

ГОСТ Р МЭК 870-5-1-95 Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 1. Форматы передаваемых кадров

ГОСТ Р 51841-2001 Программируемые контроллеры. Общие технические требования и методы испытаний

3 Определения

В настоящем стандарте применены следующие термины с соответствующими определениями.

3.1 измерительная система (ИС): Совокупность измерительных, связующих, вычислительных компонентов, образующих измерительные каналы, и вспомогательных устройств (компонентов измерительной системы), функционирующих как единое целое, предназначенная для:

- получения информации о состоянии объекта с помощью измерительных преобразований в общем случае множества изменяющихся во времени и распределенных в пространстве величин, характеризующих это состояние;

- машинной обработки результатов измерений;

- регистрации и индикации результатов измерений и результатов их машинной обработки;

- преобразования этих данных в выходные сигналы системы в разных целях.

Примечание - ИС обладают основными признаками средств измерений и являются их разновидностью.

3.2 измерительный канал измерительной системы (измерительный канал ИС): Конструктивно или функционально выделяемая часть ИС, выполняющая законченную функцию от восприятия измеряемой величины до получения результата ее измерений, выражаемого числом или соответствующим ему кодом, или до получения аналогового сигнала, один из параметров которого - функция измеряемой величины.

Примечание - Измерительные каналы ИС могут быть простыми и сложными. В простом измерительном канале реализуется прямой метод измерений путем последовательных измерительных преобразований. Сложный измерительный канал в первичной части представляет собой совокупность нескольких простых измерительных каналов, сигналы с выхода которых используются для получения результата косвенных, совокупных или совместных измерений или для получения пропорционального ему сигнала во вторичной части сложного измерительного канала ИС.

3.3 компонент измерительной системы (компонент ИС): Входящее в состав ИС техническое устройство, выполняющее одну из функций, предусмотренных процессом измерений.

Примечание - В соответствии с этими функциями компоненты подразделяют на измерительные, связующие, вычислительные, комплексные и вспомогательные.

3.3.1 измерительный компонент измерительной системы (измерительный компонент ИС): Средство измерений, для которого отдельно нормированы метрологические характеристики, например измерительный прибор, измерительный преобразователь (первичный, включая устройства для передачи воздействия измеряемой величины на чувствительный элемент; промежуточный, в том числе модуль аналогового ввода-вывода, измерительный коммутатор, искробезопасный барьер, аналоговый фильтр и т.п.), мера.

Примечание - К измерительным компонентам относят и так называемые аналоговые "вычислительные" устройства, выполняющие по существу не вычисления (операции над числами), а измерительные преобразования. Такие устройства относят к группе аналоговых функциональных преобразователей или приборов с одним или несколькими входами.

3.3.2 связующий компонент измерительной системы (связующий компонент ИС): Техническое устройство или часть окружающей среды, предназначенное или используемое для передачи с минимально возможными искажениями сигналов, несущих информацию об измеряемой величине от одного компонента ИС к другому (проводная линия связи, радиоканал, телефонная линия связи, высоковольтная линия электропередачи с соответствующей каналообразующей аппаратурой, а также переходные устройства - клеммные колодки, кабельные разъемы и т.п.).

3.3.3 вычислительный компонент измерительной системы (вычислительный компонент ИС):

Цифровое вычислительное устройство (или его часть) с программным обеспечением, выполняющее вычисления результатов прямых, косвенных, совместных или совокупных измерений (выражаемых числом или соответствующим ему кодом) по результатам первичных измерительных преобразований в ИС, а также логические операции и управление работой ИС.

Примечание - В отдельных случаях вычислительный компонент может входить в состав измерительного компонента, метрологические характеристики которого нормированы с учетом программы, реализуемой вычислительным компонентом.

3.3.4 комплексный компонент измерительной системы (комплексный компонент ИС, измерительно-вычислительный комплекс): Конструктивно объединенная или территориально локализованная совокупность компонентов, составляющая часть ИС, завершающая, как правило, измерительные преобразования, вычислительные и логические операции, предусмотренные процессом измерений и алгоритмами обработки результатов измерений в иных целях, а также выработки выходных сигналов системы.

Примечания

1 Комплексный компонент ИС - это вторичная часть ИС, воспринимающая, как правило, сигналы от первичных измерительных преобразователей.

2 Примерами комплексных компонентов ИС могут служить контроллеры, программно-технические комплексы, блоки удаленного ввода-вывода и т.п.

3 Комплексный компонент ИС, а также некоторые измерительные и связующие компоненты ИС могут представлять собой многоканальные устройства. В этом случае различают измерительные каналы указанных компонентов.

3.3.5 вспомогательный компонент измерительной системы (вспомогательный компонент ИС): Техническое устройство (блок питания, система вентиляции, устройства, обеспечивающие удобство управления и эксплуатации ИС и т.п.), обеспечивающее нормальное функционирование ИС, но не участвующее непосредственно в измерительных преобразованиях.

4 Общие положения

4.1 ИС являются разновидностью средств измерений и на них распространяются все общие требования к средствам измерений.

4.2 Деятельность метрологических служб по метрологическому обеспечению ИС регламентируют документацией, включающей в себя настоящий стандарт (головной документ по метрологическому обеспечению ИС), ГОСТ 27300 , а также , , [З], , , , и другие (для ИС военного назначения), в которых установлена специфика метрологического обеспечения ИС.

4.3 Для ИС, входящих в состав более сложных структур, следует учитывать требования комплекса стандартов и нормативных документов на автоматизированные системы: ГОСТ 34.201 , ГОСТ 34.601 , ГОСТ 34.602 и другие документы этого комплекса, а также нормативные документы и эксплуатационная документация по областям применения этих структур.

4.4 Метрологическое обеспечение ИС включает в себя следующие виды деятельности:

- нормирование, расчет метрологических характеристик измерительных каналов ИС;

- метрологическая экспертиза технической документации на ИС;

- испытания ИС с целью утверждения типа; утверждение типа ИС и испытания на соответствие утвержденному типу;

- сертификация ИС;

- поверка и калибровка ИС;

- метрологический надзор за выпуском, монтажом, наладкой, состоянием и применением ИС.

5 Нормирование метрологических характеристик

5.1 Метрологические характеристики ИС нормируют для каждого измерительного канала ИС и при необходимости для комплексных и измерительных компонентов ИС.

5.2 Для измерительных каналов ИС-1 (а также для измерительных каналов по примечанию к 7.1.1) изготовитель, как правило, устанавливает нормы на метрологические характеристики измерительных каналов в целом в соответствии с ГОСТ 8.009 и с учетом .

Нормированные метрологические характеристики измерительных каналов должны обеспечивать:

- расчет характеристик погрешности измерений, выполняемых посредством измерительного канала в рабочих условиях эксплуатации;

- контроль при испытаниях и поверке ИС на соответствие нормированным метрологическим характеристикам измерительного канала ИС.

Примечание - Если экспериментальное определение (контроль) метрологических характеристик измерительного канала в целом не может быть обеспечено, то метрологические характеристики нормируют для таких частей измерительного канала, для которых такое определение возможно. В совокупности указанные части должны образовывать измерительный канал в целом.

5.3 Для измерительных каналов ИС-2 в проектной документации в качестве метрологических характеристик каждого измерительного канала допускается нормировать характеристики погрешности по ГОСТ 8.009 при нормальных условиях эксплуатации измерительных компонентов и при рабочих условиях эксплуатации, определяемых таким сочетанием влияющих величин, при которых характеристики погрешности измерительного канала имеют по абсолютной величине (по модулю) наибольшее значение. Рекомендуется также нормировать характеристики погрешностей измерительного канала для промежуточных сочетаний влияющих величин. Указанные значения характеристик погрешности измерительных каналов следует подтверждать их расчетом по метрологическим и другим характеристикам компонентов ИС, образующих измерительный канал.

Примечания

1 Расчетные значения характеристик погрешности измерительных каналов не подлежат обязательной экспериментальной проверке. Однако должен быть обеспечен контроль метрологических характеристик всех компонентов (частей) ИС, нормы на которые используют в качестве исходных данных при расчете.

2 Требования 5.3 и примечания 1 к 5.3 распространяют также на измерительные каналы ИС-1, для которых не может быть обеспечена экспериментальная проверка метрологических характеристик измерительных каналов в целом.

5.4 При расчете характеристик погрешности измерительных каналов рекомендуется руководствоваться , , а также другими действующими нормативными документами по расчету характеристик погрешности измерений общего (основополагающего) характера, например ГОСТ 8.207 и , , , , , и нормативными документами по видам измерений и областям применения средств измерений.

5.5 Для комплексных компонентов ИС следует нормировать метрологические характеристики по ГОСТ 8.009 с учетом ГОСТ Р 51841 .

Для измерительных компонентов ИС следует нормировать метрологические характеристики по ГОСТ 8.009 и ГОСТ 8.256 с учетом нормативных документов на конкретные виды средств измерений.

Нормированные метрологические характеристики комплексных и измерительных компонентов должны обеспечивать:

- расчет характеристик погрешности измерительных каналов ИС в рабочих условиях эксплуатации по нормированным метрологическим характеристикам компонентов;

- контроль указанных компонентов при испытаниях для целей утверждения типа и поверке на соответствие нормированным метрологическим характеристикам.

5.6 Для программ, реализуемых вычислительным компонентом ИС, если свойства этих программ не учтены при нормировании метрологических характеристик соответствующих измерительных компонентов (см. примечание к 3.3.3), нормируют характеристики погрешности вычислений, обусловленной алгоритмом вычислений и его программной реализацией, а при необходимости также и другие характеристики с учетом особенностей вычислительного компонента, которые влияют на характеристики составляющей погрешности измерительного канала, вносимой программой обработки результатов измерений. Эксплуатационная (проектная) документация на ИС должна содержать такое описание алгоритма и реализующей его программы или метода имитационного моделирования, которое позволяло бы определить характеристики погрешности результата прямых, косвенных, совокупных или совместных измерений по характеристикам погрешности той части измерительных каналов ИС, которая предшествует вычислительному компоненту.

5.7 Для связующих компонентов ИС нормируют такие характеристики, которые либо обеспечивают пренебрежимо малое значение составляющей погрешности измерительного канала, вносимой связующим компонентом, либо позволяют определить значение этой составляющей.

6 Метрологическая экспертиза технической документации

6.1 Метрологической экспертизе подвергают следующую документацию:

- техническое задание (далее - ТЗ) на разработку ИС-1 или проектирование ИС-2;

- технические условия (далее - ТУ) для отечественных ИС-1, руководство по эксплуатации, конструкторскую и технологическую документацию - для ИС-1;

- проектную и эксплуатационную документацию, предназначенную для комплектации, монтажа, наладки и эксплуатации - для ИС-2;

- методику расчета метрологических характеристик измерительных каналов ИС по метрологическим характеристикам измерительных и связующих компонентов с учетом, при необходимости, программы обработки, реализуемой вычислительным компонентом, - для ИС-2;

- программу и методику испытаний ИС;

- проект нормативного документа на методику поверки (калибровки) ИС.

6.2 Метрологическую экспертизу технической документации на ИС проводят в соответствии с и метрологические службы юридических лиц, аккредитованные в соответствии с , головные и базовые организации метрологической службы в отраслях, а также органы Государственной метрологической службы, государственные научные метрологические центры и другие специализированные организации, аккредитованные в соответствии с в качестве государственных центров испытаний ИС.

6.3 Основным содержанием метрологической экспертизы ТЗ на разработку (проектирование) ИС, содержащего исходные данные для разработки (проектирования), является проверка достаточности исходных требований, приводимых в проекте ТЗ:

- для рационального нормирования метрологических характеристик измерительных каналов ИС на этапе их разработки (проектирования);

- для построения эффективного способа метрологического обеспечения ИС на последующих этапах ее жизненного цикла.

К исходным требованиям относят:

- назначение ИС и сведения об ее использовании в сфере (или вне сферы) государственного метрологического контроля и надзора;

- сведения об измеряемых величинах и их характеристиках (диапазоне значений, возможных изменениях в процессе измерений и т.п.);

- перечни измерительных каналов и нормы на их погрешности;

- условия измерений (с учетом протяженности измерительных каналов ИС);

- условия метрологического обслуживания (например, отсутствие доступа к входу ИС) и т.п.

6.4 Основным содержанием метрологической экспертизы ТУ, а также конструкторской, технологической, проектной и эксплуатационной документации является проверка соответствия заложенных в ТУ и указанной документации комплексов метрологических характеристик измерительных каналов ИС и их компонентов, методов и средств их определения, контроля и (или) расчета исходным требованиям ТЗ и , а также проверка соблюдения метрологических требований, правил и норм, регламентируемых документами ГСИ, ЕСКД , ЕСТПП, ЕСПД, СНиП, стандартами отраслей и предприятий и другими документами, содержащими специфические для отрасли и предприятия правила и нормы.

При проведении метрологической экспертизы, в частности, проверяют:

- наличие в ТУ, проектной и эксплуатационной документации полного перечня измерительных каналов с указанием их структуры и метрологических требований к ним, перечня измерительных, связующих и вычислительных компонентов, образующих каждый измерительный канал, проектов документов на методики поверки (калибровки) ИС и их компонентов и методик расчета метрологических характеристик ИС по метрологическим характеристикам ее компонентов (для ИС-2);

- контролепригодность конструкции ИС, то есть оценку конструкции с точки зрения обеспечения возможности и удобства контроля или определения метрологических характеристик ИС (или других параметров и характеристик, связанных с метрологическими характеристиками и обеспечивающих их требуемые значения) в процессе ее изготовления, испытаний, эксплуатации и ремонта;

- наличие в проектной документации, предназначенной для монтажа и наладки ИС на объекте, требований к параметрам и характеристикам, необходимым для контроля качества монтажа ИС на объекте (в том числе к сопротивлению изоляции электрических цепей, правильности установки первичных измерительных преобразователей и соединительных коробок, к монтажу компонентов ИС, к качеству экранирования внешнего монтажа, заземления и выполнения контура логического нуля и др.); для проверки соблюдения проектных требований к тем параметрам связующих компонентов, которые оказывают влияние на метрологические характеристики измерительных каналов, в частности к параметрам цифровых линий связи, - соответствие требованиям ГОСТ Р МЭК 870-5-1 ;

- наличие материалов, содержащих результаты проверки соответствия указанных выше параметров и характеристик заданным для них требованиям;

- наличие и содержание материалов (протоколов, актов, журналов, отчетов и т.п.) исследовательских, предварительных испытаний, испытаний в процессе опытной эксплуатации (то есть испытаний на различных стадиях жизненного цикла ИС), касающихся метрологических свойств ИС.

6.5 Экспертизу номенклатуры метрологических характеристик измерительных каналов ИС проводят с учетом ГОСТ 8.009 , ГОСТ 8.256 , , а для комплексных компонентов, кроме того, с учетом ГОСТ Р 51841 .

6.6 Экспертизу методик расчета метрологических характеристик измерительных каналов ИС проводят с учетом , и .

6.7 Экспертизу программ и методик испытаний, проектов документов на методики поверки (калибровки) ИС проводят в соответствии с указаниями разделов 7 и 8.

7 Испытания, утверждение типа и сертификация

7.1 Испытания для целей утверждения типа и утверждение типа проводят для ИС, подлежащих применению в сферах распространения государственного метрологического контроля и надзора.

7.1.1 Если в сферах распространения государственного метрологического контроля и надзора подлежит применению только часть из общего числа измерительных каналов ИС, а другая часть - вне этих сфер, то испытаниям для целей утверждения типа ИС подвергают только первую часть измерительных каналов.

При утверждении типа такой ИС в описании типа, являющемся неотъемлемой частью сертификата об утверждении типа, указывают те измерительные каналы, на которые распространяется сертификат.

Допускается вместо сертификата на такие ИС оформлять сертификат на измерительные каналы с обязательным указанием наименования ИС, в которую эти измерительные каналы входят как составная часть.

Примечание - Если измерительный канал предназначен для использования в составе различных типов ИС или более сложных структур, то может быть утвержден тип такого измерительного канала без указания наименования конкретной ИС. При испытаниях для целей утверждения типа ИС, в состав которых включен такой измерительный канал утвержденного типа, необходима проверка совместимости этого канала с остальной частью ИС, в частности проверка отсутствия влияния их друг на друга.

7.1.2 Утверждение типа ИС-2 осуществляют:

- для единичных экземпляров ИС-2, спроектированных для конкретных объектов;

- для ИС-2, устанавливаемых по типовому проекту на различных объектах, с выдачей сертификата утверждения типа на срок не более 5 лет без ограничения количества устанавливаемых экземпляров ИС-2. При этом проектную организацию приравнивают к изготовителю ИС.

7.1.3 Для ИС, входящих в состав более сложных структур, сертификат утверждения типа оформляют на ИС с указанием наименования более сложной структуры. Допускается оформлять сертификат утверждения типа на информационно-измерительные системы, системы контроля и диагностирования и другие сложные структуры, основной частью которых является ИС, если эти структуры предназначены для получения количественной информации об объектах.

7.2 Испытания для целей утверждения типа ИС, измерительных каналов и комплексных компонентов проводят по программам и в порядке, общие требования к которым изложены в , , , и других документах (для ИС военного назначения).

В программах испытаний ИС-1, измерительных каналов по примечанию к 7.1.1 и комплексных компонентов (как отечественных, так и импортируемых) следует предусматривать ознакомление с системой качества, используемой изготовителем.

Примечание - При утверждении типа единичных экземпляров ознакомление с системой качества допускается не проводить.

7.3 В составе измерительных каналов ИС-2, на которые будет распространен сертификат утверждения типа, допускается применять измерительные и комплексные компоненты только утвержденных типов.

Исключение составляют измерительные каналы утвержденных типов без указания наименования ИС (примечание к 7.1.1), а также измерительные каналы, для которых в эксплуатационной документации нормированы метрологические характеристики канала в целом и комплектная поверка которых (поверка измерительного канала в целом) обеспечена необходимыми методами и средствами.

7.4 Программы, реализуемые вычислительным компонентом, подлежат метрологической аттестации в соответствии с , если они влияют на результаты и погрешности измерений, но при этом не использованы в процессе экспериментальной проверки измерительных каналов при испытаниях ИС или комплексного компонента или предусмотрена возможность модификации этих программ в процессе эксплуатации ИС. Программы должны быть защищены от несанкционированного доступа.

В любом случае техническая документация на ИС или комплексный компонент, представляемая на испытания для целей утверждения типа, должна содержать описание алгоритма обработки измерительной информации и идентифицирующие признаки реализующей его программы (номер версии, объем программы и т.п.). При модификации программы разработчиком или в процессе эксплуатации в той части, которая связана с обработкой измерительной информации, новая версия программы должна быть представлена на метрологическую аттестацию в организацию, проводившую испытания ИС (комплексного компонента) с целью утверждения типа.

7.5 Испытания в системах обязательной сертификации ИС и компонентов ИС, подлежащих обязательной сертификации в системе ГОСТ Р или других системах в соответствии с действующим законодательством, должны предшествовать утверждению типа ИС. Допускается испытания в системах обязательной сертификации ИС и компонентов ИС проводить одновременно с испытаниями с целью утверждения типа.

7.6 Испытания в системе добровольной сертификации средств измерений проводят по программам и в порядке, общие требования к которым изложены в , , .

7.7 Испытания на соответствие утвержденному типу проводят для ИС-1, комплексных и измерительных компонентов в порядке, изложенном в .

8 Поверка и калибровка

8.1 Поверке подвергают измерительные каналы ИС, на которые распространен сертификат утверждения типа, подлежащие применению или применяемые в сферах распространения государственного метрологического контроля и надзора:

ИС-1 - первично при выпуске из производства или ремонта, при ввозе по импорту и периодически в процессе эксплуатации. Необходимость первичной поверки измерительных каналов ИС-1 после установки на объекте определяют при утверждении типа ИС-1;

ИС-2 - первично при вводе в постоянную эксплуатацию после установки на объекте или после ремонта (замены) компонентов ИС-2, влияющих на погрешность измерительных каналов, и периодически в процессе эксплуатации.

8.2 Если в сфере распространения государственного метрологического контроля и надзора применяют только часть из общего числа измерительных каналов ИС, на которые распространен сертификат утверждения типа, а оставшуюся часть - вне этой сферы, то поверке следует подвергать только первую часть измерительных каналов. В этом случае оставшуюся часть измерительных каналов подвергают калибровке.

В свидетельстве о поверке или сертификате о калибровке таких ИС указывают те каналы, на которые они распространены.

8.3 Организация и порядок проведения поверки измерительных каналов ИС установлены в , , .

8.4 Поверку проводят в соответствии с нормативными документами на методики поверки измерительных каналов ИС, разрабатываемыми в соответствии с и с учетом рекомендаций , , , , , . При первичной поверке ИС-2, установленных по типовому проекту, обязательно проверяют соответствие конкретного экземпляра ИС-2 типовому проекту в части комплектности и других требований проекта.

8.5 Рекомендуются следующие способы поверки измерительных каналов ИС:

- измерительные каналы ИС-1, как правило, подвергают комплектной поверке, при которой контролируют метрологические характеристики измерительных каналов ИС в целом (от входа до выхода канала);

- измерительные каналы ИС-2, как правило, подвергают покомпонентной (поэлементной) поверке: демонтированные первичные измерительные преобразователи (датчики) - в лабораторных условиях; вторичную часть - комплексный компонент, включая линии связи, - на месте установки ИС при одновременном контроле всех влияющих факторов, действующих на отдельные компоненты. При наличии специализированных переносных эталонов или передвижных эталонных лабораторий и доступности входов ИС-2 комплектная поверка измерительных каналов ИС-2 на месте установки предпочтительна.

Примечание - При необходимости допускаемые значения метрологических характеристик измерительных каналов ИС или комплексных компонентов, поверяемых на месте установки, определяют расчетным путем по нормированным метрологическим характеристикам измерительных компонентов для условий, сложившихся на момент поверки и отличающихся от нормальных условий.

8.6 Для программ по 7.4 проверяют их соответствие аттестованным программам и защищенность от несанкционированного доступа.

8.7 Калибровке подвергают измерительные каналы ИС, не подлежащие применению или не применяемые в сферах распространения государственного метрологического контроля и надзора.

Калибровку измерительных каналов ИС проводят в соответствии с и .

9 Метрологический надзор

9.1 Метрологический надзор за ИС осуществляют органы Государственной метрологической службы и метрологические службы юридических лиц.

9.2 Организация, порядок проведения и содержание работ, проводимых при государственном метрологическом надзоре за выпуском, состоянием и применением ИС, установлены в .

9.3 Организация, порядок проведения и содержание работ, проводимых при метрологическом надзоре за состоянием и применением ИС, осуществляемом метрологическими службами юридических лиц, установлены в .

ПРИЛОЖЕНИЕ А (справочное). Библиография

ПРИЛОЖЕНИЕ А
(справочное)

МИ 2439-97 Государственная система обеспечения единства измерений. Метрологические характеристики измерительных систем. Номенклатура. Принцип регламентации, определения и контроля

МИ 2440-97 Государственная система обеспечения единства измерений. Методы экспериментального определения и контроля характеристик погрешности измерительных каналов измерительных систем и измерительных комплексов

МИ 2441-97 Государственная система обеспечения единства измерений. Испытания с целью утверждения типа измерительных систем. Общие требования

МИ 222-80 Методика расчета метрологических характеристик ИК ИИС по метрологическим характеристикам компонентов

МИ 2539-99 Государственная система обеспечения единства измерений. Измерительные каналы контроллеров, измерительно-вычислительных, управляющих, программно-технических комплексов. Методика поверки

МИ 2168-91 Государственная система обеспечения единства измерений. ИИС. Методика расчета метрологических характеристик измерительных каналов по метрологическим характеристикам линейных аналоговых компонентов

МИ 2376-96 Государственная система обеспечения единства измерений. Порядок проведения, оформления, рассмотрения результатов испытаний и утверждения типа средств измерений военного назначения, не предназначенных для серийного выпуска или ввозимых из-за рубежа единичными экземплярами

МИ 2232-2000 Государственная система обеспечения единства измерений. Обеспечение эффективности измерений при управлении технологическими процессами. Оценивание погрешности измерений при ограниченной исходной информации

РД 50-453-84 Характеристики погрешности средств измерений в реальных условиях эксплуатации. Методы расчета

МИ 1552-86 Государственная система обеспечения единства измерений. Измерения прямые однократные. Оценивание погрешностей результатов измерений

МИ 1730-87 Государственная система обеспечения единства измерений. Погрешности косвенных измерений характеристик процессов. Методика расчета

МИ 2083-90 Государственная система обеспечения единства измерений. Измерения косвенные. Определение результатов измерений и оценивание их погрешностей

МИ 2267-2000 Государственная система обеспечения единства измерений. Обеспечение эффективности измерений при управлении технологическими процессами. Метрологическая экспертиза технической документации

МИ 1314-86 Государственная система обеспечения единства измерений. Порядок проведения метрологической экспертизы технических заданий на разработку средств измерений

ПР 50.2.013-97 Государственная система обеспечения единства измерений. Порядок аккредитации метрологических служб юридических лиц на право аттестации методик выполнения измерений и проведения метрологической экспертизы документов

ПР 50.2.010-94 Государственная система обеспечения единства измерений. Требования к государственным центрам испытаний средств измерений и порядок их аккредитации

МИ 2146-98 Государственная система обеспечения единства измерений. Порядок разработки и требования к содержанию программ испытаний средств измерений для целей утверждения их типа

ПР 50.2.009-94 Государственная система обеспечения единства измерений. Порядок проведения испытаний и утверждения типа средств измерений

МИ 2174-91 Государственная система обеспечения единства измерений. Аттестация алгоритмов и программ обработки данных при измерениях. Основные положения

МИ 2277-93 Государственная система обеспечения единства измерений. Сертификация средств измерений. Основные положения и порядок проведения работ

МИ 2278-93 Государственная система обеспечения единства измерений. Сертификация средств измерений. Органы по сертификации. Порядок аккредитации

МИ 2279-93 Государственная система обеспечения единства измерений. Сертификация средств измерений. Порядок ведения Реестра системы

ПР 50.2.006-94 Государственная система обеспечения единства измерений. Порядок проведения поверки средств измерений

ПР 50.2.012-94 Государственная система обеспечения единства измерений. Порядок аттестации поверителей средств измерений

ПР 50.2.014-96 Государственная система обеспечения единства измерений. Правила проведения аккредитации метрологических служб юридических лиц на право поверки средств измерений

МИ 2526-99* Государственная система обеспечения единства измерений. Нормативные документы на методики поверки средств измерений. Основные положения
_______________
* На территории Российской Федерации документ не действует. Действует РМГ 51-2002 . - Примечание изготовителя базы данных.


ПР 50.2.016-94 Государственная система обеспечения единства измерений. Российская система калибровки. Требования к выполнению калибровочных работ

ПР 50.2.018-95 Государственная система обеспечения единства измерений. Порядок аккредитации метрологических служб юридических лиц на право проведения калибровочных работ

ПР 50.2.002-94 Государственная система обеспечения единства измерений. Порядок осуществления государственного метрологического надзора за выпуском, состоянием и применением средств измерений аттестованными методиками выполнения измерений, эталонами и соблюдением метрологических правил и норм

МИ 2304-94 Государственная система обеспечения единства измерений. Метрологический контроль и надзор, осуществляемые метрологическими службами юридических лиц



Электронный текст документа

подготовлен АО "Кодекс" и сверен по:

официальное издание
М.: ИПК Издательство стандартов, 2002

ГОСТ Р 8.596-2002 Государственная система обеспечения единства измерений (ГСИ). Метрологическое обеспечение измерительных систем. Основные положения

Название документа: ГОСТ Р 8.596-2002 Государственная система обеспечения единства измерений (ГСИ). Метрологическое обеспечение измерительных систем. Основные положения
Номер документа: 8.596-2002
Вид документа: ГОСТ Р
Принявший орган: Госстандарт России
Статус: Действующий
Опубликован: официальное издание

М.: ИПК Издательство стандартов, 2002 год

Дата принятия: 30 сентября 2002
Дата начала действия: 01 марта 2003

Как правильно проводить поверку и калибровку измерительных каналов АСУТП? Существуют ли для этого методики поверки? Может, кто сталкивался с таким вопросом.

Ситуация с эти делом, на мой взгляд, следующая.

1. Производить поверку измерительных каналов АСУТП (ИК АСУТП) можно только в случае, если ИК АСУТП или измерительная система АСУТП (ИС АСУТП) в целом прошли испытания с целью утверждения типа и занесены в государственный реестр средств измерений по методике поверки, указанной в описании типа на ИК АСУТП или ИС АСУТП в целом, и ни как иначе.

Т.е. методика поверки должна появиться, как минимум, в ходе испытаний с целью утверждения типа. (Методика поверки, изложенная в МИ 2539, пригодна только для поверки одного из измерительных компонентов ИК (ИС) - контроллера ИК (ИС), а не ИК или ИС в целом. Для ИК (ИС) АСУТП в целом должна быть разработана методика поверки, которая должна быть утверждена в ходе испытаний с целью утверждения типа. Методики поверки ИК (ИС) АСУТП в целом типовой нет, поэтому, как правило, для каждой АСУТП методика поверки - своя.Как вариант - можно за основу взять МИ 3000 "Системы автоматизированные информационно-измерительные коммерческого учета электрической энергии.Типовая методика поверки."

2. Калибровку ИК АСУТП или ИС АСУТП в целом можно проводить по методике калибровки, разработанной самостоятельно. Предпочтение следует отдавать калибровке комплектным способом - от датчика до средства отображения информации.

Так как комплектным методом калибровать ИК АСУТП не представляется (в большинстве случаев) возможным, калибровку ИК АСУТП проводят поэлементно (по частям). Как правило, ИК разбивается на первичную часть ИК - датчики и вторичную (электрический тракт). В этом случае методика калибровки ИК АСУТП должна предусматривать расчет метрологических характеристик (МХ) ИК по действительным значениям МХ, выделенных частей ИК (датчика и электрического тракта), полученным в ходе калибровки этих частей. Калибровка выделенных частей ИК (датчика и электрического тракта), в этом случае, должна, строго говоря, проводиться по методикам калибровки - с определением их действительных МХ (с расчетом неопределенности полученных результатов измерений в ходе калибровки). Т.е. методики поверки датчиков, которые имеются в наличии и МИ2539 для калибровки измерительных компонентов ИК применять, строго говоря, - нельзя. В них не предусмотрено определение действительных МХ измерительных компонентов - следовательно необходимо разрабатывать методики калибровки и для всех датчиков, входящих в ИС (так как их просто нет) и электрических трактов ИК.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • Оглавление
  • Введение
  • Термины и определения
  • 1. Поверка и калибровка ИИС
    • 1.1 Общие положения
    • 1.2 Методы контроля метрологических характеристик
    • 1.3 Метод определения погрешности
    • 1.4 Проблемы и способы решения в области поверки и калибровки ИИС
  • 2. Организация работ по обеспечению качества на предприятии ФБУ «Сахалинский ЦСМ»
  • Заключение
  • Список используемой литературы
  • Введение
  • На сегодня метрологическая деятельность регулируется Законом Российской Федерации «Об обеспечении единства измерений». Из этого следует, что эта деятельность включена в общую систему права и с одной стороны имеет свои специфические нормы, с другой - должна тесно взаимодействовать с общей системой государственного управления и государственной системой общеобязательных норм.
  • Государственная функция требует государственного управления. В свою очередь управление реализуется в определенной системе. Такой системой является национальная система измерений, включающая всех участников измерительного дела - разработчиков, производителей и пользователей средств измерений. Для достижения единства измерений формируются условия для функционирования «государственной системы обеспечения единства измерений» (ГСИ). Важнейшим звеном этой системы является «законодательная метрология». Формально этот термин обозначает раздел метрологии, включающий комплексы взаимосвязанных и взаимообусловленных общих правил, требований и норм, а также другие вопросы, нуждающиеся в регламентации и контроле со стороны государства, направленные на обеспечение единства измерений и единообразия средств измерений.
  • С 1 января 2009 г. Вступил в силу новый Закон Российской Федерации «Об обеспечении единства измерений», который стал актом, обладающим высшей юридической силой в сферах измерительного дела. Он установил регулирование наиболее важных отношений. В этих условиях конкретизация основных положений Закона возлагается на акты правотворчества -подзаконные акты или нормативные документы законодательной метрологии.
  • Настоящий Федеральный закон регулирует отношения, возникающие при выполнении измерений, установлении и соблюдении требований к измерениям, единицам величин, эталонам единиц величин, стандартным образцам, средствам измерений (далее СИ), применении стандартных образцов, средств измерений, методик (методов) измерений, а также при осуществлении деятельности по обеспечению единства измерений, предусмотренной законодательством Российской Федерации об обеспечении единства измерений, в том числе при выполнении работ и оказании услуг по обеспечению единства измерений.
  • Одной из разновидностей средств измерений являются измерительные системы (далее ИС) и на них распространяются все общие требования к средствам измерений.
  • Деятельность метрологических служб по метрологическому обеспечению ИС регламентируют документацией, ГОСТ Р 8.596-2002 (головной документ по метрологическому обеспечению ИС), ГОСТ 27300, а также , , , , , , и другие, в которых установлена
  • Метрологическое обеспечение ИС включает в себя следующие виды деятельности:
  • - нормирование, расчет метрологических характеристик измерительных каналов ИС;
  • - метрологическая экспертиза технической документации на ИС;
  • - испытания ИС с целью утверждения типа; утверждение типа ИС и испытания на соответствие утвержденному типу;
  • - сертификация ИС;
  • - поверка и калибровка ИС;
  • - метрологический надзор за выпуском, монтажом, наладкой, состоянием и применением ИС
  • Иногда, чтобы получить информацию о параметрах объекта, необходимо проводить комплексные измерения, а значение измеряемой величины получать расчетным путем на основе известных функциональных зависимостей между ней и величинами, подвергаемыми измерениям. Данные задачи успешно решаются с помощью информационных измерительных систем (далее ИИС), получивших широкое распространение. В настоящее время нет общепринятого однозначного определения, что такое ИИС. Среди существующих подходов к рассмотрению понятия ИИС следует выделить два основных. Сущность одного подхода отражена в рекомендации по межгосударственной стандартизации РМГ 29-99 "ГСИ. Метрология. Основные термины и определения", где ИИС рассматривается,как разновидность измерительной системы (ИС).
  • На практике почти повсеместно применяется термин "информационно-измерительная система", который, по мнению ряда видных метрологов, неверно отражает понятие об измерительной информационной системе.
  • При образовании термина метрологического характера на первом месте должен указываться основной терминоэлемент (в данном случае - измерительная), затем - дополнительный (информационная). Это положение и отражено в примечании к приведенному выше определению.
  • Сущность второго подхода отражена в определениях, приведенных в рекомендации МИ 2438-97 "ГСИ. Системы измерительные. Метрологическое обеспечение. Основные положения", где ИС рассматривается как составная часть более сложных структур - ИИС, которые могут реализовывать следующие функции: измерительные информационные, логические (распознавания образов, контроль), диагностики, вычислительные.
  • Необходимо отметить один важный момент, отраженный в пункте 2 примечания к определению, данному в МИ 2438-97. ИС (а также и ИИС) рассматриваются как разновидность СИ. Согласно пункту 1 примечания к тому же определению, в сложных системах рекомендуется объединять измерительные каналы в отдельную подсистему с четко выраженными границами. Последнее обстоятельство связано с одной из особенностей ИИС. Комплектацию ИИС как единого, законченного изделия из частей, выпускаемых различными заводами-изготовителями, часто осуществляется только на месте эксплуатации.
  • В результате этого может отсутствовать заводская нормативная и техническая документация (технические условия), регламентирующая технические, в частности, метрологические требования к ИИС как единому изделию. Соответственно возникают трудности с проведением испытаний для целей утверждения типа.
  • Возможность развития, наращивания ИИС в процессе эксплуатации или возможность изменения ее состава (структуры) в зависимости от целей эксперимента, по существу затрудняет или исключает регламентацию требований к таким ИИС в отличие от обычных СИ, являющихся "завершенными" изделиями на момент выпуска их заводом-изготовителем. Для обеспечения соответствующей регламентации и осуществляется выделение подсистем в рамках более сложной ИИС. При дальнейшем изложении под сокращением ИИС будет пониматься термин "информационно-измерительная система" как наиболее распространенный и применяемый в МИ 2438-97. Название "информационная" указывает: - на конечный продукт, получаемый при помощи ИИС.
  • Основной процесс эмпирического познания - измерение, при помощи которого получается первичная количественная информация. Поэтому к понятию "информационная" добавляется уточняющее "измерительная".
  • Одним из условий рассмотрения СИ как системы является необходимость и целесообразность изменений его структуры. Изменения могут осуществляться как от применения к применению (многофункциональная система), так и в процессе применения (управляемая или адаптивная системы).
  • Если структура СИ неизменна и условия его использования остаются одинаковыми в течение периода эксплуатации, возможно определить модель СИ типа "вход-выход". Например, электронные СИ для измерения температуры серии 3144,644 фирмы Emerson имеют нормированные MX и, с точки зрения потребителя, не рассматриваются с системных позиций. Автоматизация также не обязательно связана со структурированностью СИ, трактуемого как система. Компактный прибор, рассматриваемый как единое изделие, может быть высоко автоматизированным.
  • В развитии ИС можно выделить два этапа, граница между которыми определяется включением в состав систем средств вычислительной техники. На первом этапе структура и функции системы однозначно согласованы и измерительная функция является определяющей. Информационные функции, связанные с отображением результатов измерений, рассматриваются как вспомогательные.
  • На втором этапе система становится информационной в широком смысле, т.е. позволяет реализовать не только измерительную, но и другие информационные функции. Результатом является создание ИИС, которые предназначены для выполнения, на основе измерений, функций контроля, испытаний, диагностики и др.
  • калибровка информационный измерительный погрешность
  • Т ермины и определения
  • Метрология - наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.
  • Единство измерений - состояние измерений, характеризующееся тем, что их результаты выражаются в узаконенных единицах, размеры которых в установленных пределах равны размерам единиц, воспроизводимых первичными эталонами, а погрешности результатов измерений известны и с заданной вероятностью не выходят за установленные пределы.
  • Обеспечение единства измерений - деятельность метрологических служб. направленная на достижение и поддержание единства измерений в соответствии с законодательными актами, а так же правилами и нормами, установленными государственными стандартами и другими нормативными документами по обеспечению единства измерений.
  • Государственная система обеспечения единства измерений - комплекс нормативных документов межрегионального и межотраслевого уровней, устанавливающий правила, нормы, требования, направленные на достижение и поддержание единства измерений в стране, (при требуемой точности), утверждаемых Госстандартом страны.
  • Физическая величина -- одно из свойств физического объекта, общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них.
  • Единица физической величины - физическая величина фиксированного размера, которой условно присвоено числовое значение, равное 1, и применяемая для количественного выражения однородных с ней физических величин.
  • Измерение - совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения измеряемой величины с ее единицей и получения значения этой величины.
  • Средство измерений - техническое средство, предназначенное для измерений и имеющее нормированные метрологические характеристики.
  • Погрешность измерения -- отклонение результата измерения от истинного значения измеряемой величины.
  • Погрешность средства измерения -- разность между показанием средства измерений и истинным значением измеряемой физической величины.
  • Поверка средств измерений - совокупность операций, выполняемых в целях подтверждения соответствия средств измерения метрологическим требованиям.
  • Калибровка средства измерений - совокупность операций, выполняемых в целях определения действительных значений метрологических характеристик средства измерений.
  • Измерительная система (ИС): Совокупность измерительных, связующих, вычислительных компонентов, образующих измерительные каналы, и вспомогательных устройств (компонентов измерительной системы), функционирующих как единое целое, предназначенная для:
  • - получения информации о состоянии объекта с помощью измерительных преобразований в общем случае множества изменяющихся во времени и распределенных в пространстве величин, характеризующих это состояние;
  • - машинной обработки результатов измерений;
  • - регистрации и индикации результатов измерений и результатов их машинной обработки;
  • - преобразования этих данных в выходные сигналы системы в разных целях.
  • Измерительный канал измерительной системы (измерительный канал ИС) : Конструктивно или функционально выделяемая часть ИС, выполняющая законченную функцию от восприятия измеряемой величины до получения результата ее измерений, выражаемого числом или соответствующим ему кодом, или до получения аналогового сигнала, один из параметров которого -- функция измеряемой величины.
  • Компонент измерительной системы (компонент ИС) : Входящее в состав ИС техническое устройство, выполняющее одну из функций, предусмотренных процессом измерений.
  • 1. Поверка и калибровка ИИС
  • 1.1 Общие положения
  • Поверке подвергают измерительные каналы ИС, на которые распространен сертификат утверждения типа, подлежащие применению или применяемые в сферах распространения государственного метрологического контроля и надзора:
  • ИС-1 -- первично при выпуске из производства или ремонта, при ввозе по импорту и периодически в процессе эксплуатации. Необходимость первичной поверки измерительных каналов ИС-1 после установки на объекте определяют при утверждении типа ИС-1;
  • ИС-2 -- первично при вводе в постоянную эксплуатацию после установки на объекте или после ремонта (замены) компонентов ИС-2, влияющих на погрешность измерительных каналов, и периодически в процессе эксплуатации.
  • Если в сфере распространения государственного метрологического контроля и надзора применяют только часть из общего числа измерительных каналов ИС, на которые распространен сертификат утверждения типа, а оставшуюся часть -- вне этой сферы, то поверке следует подвергать только первую часть измерительных каналов. В этом случае оставшуюся часть измерительных каналов подвергают калибровке.
  • В свидетельстве о поверке или сертификате о калибровке таких ИС указывают те каналы, на которые они распространены.
  • При первичной поверке ИС-2, установленных по типовому проекту, обязательно проверяют соответствие конкретного экземпляра ИС-2 типовому проекту в части комплектности и других требований проекта.
  • Для программ проверяют их соответствие аттестованным программам и защищенность от несанкционированного доступа.
  • Калибровке подвергают измерительные каналы ИС, не подлежащие применению или не применяемые в сферах распространения государственного метрологического контроля и надзора.
  • Калибровку измерительных каналов ИС проводят в соответствии с и .
  • Согласно определению ИИС обладают всеми признаками СИ. Соответственно все основные принципы, положенные в основу процедуры поверки СИ, распространяются на ИИС, их ИК и компоненты.
  • 1.2 М етоды контроля метрологических характеристик
  • Комплектной называют поверку, при которой определяются MX СИ, присущие ему как единому целому.
  • Поэлементной называют поверку, при которой значения MX СИ устанавливаются по MX его составных элементов или частей. Поэлементная поверка характерна для ИС и ИИС.
  • Как следует из определения, поверка представляет собой процедуру контроля, неотъемлемой частью которой является экспериментальное определение MX объекта контроля. Наиболее предпочтительным способом контроля и определения MX ИК ИИС и их компонентов является "сквозной" метод. При "сквозном" методе на вход ИК ИИС подается образцовый сигнал, имитирующий измеряемую величину. На выходе контролируемого ИК ИИС снимается выходной сигнал (результат измерения). Полученные в результате эксперимента значения MX служат для сравнения с нормированными MX контролируемого ИК ИИС. Необходимыми условиями для применения "сквозного" метода определения и контроля MX являются:
  • наличие доступа ко входу ИК. Ограничение доступа может быть обусловлено конструкцией или способами установки первичных измерительных преобразователей (датчиков), наличием "вредной среды в местах их расположения, климатическими условиями и т.п.;
  • возможность задания необходимого набора всех существенных для поверки ИК ИИС значений влияющих величин, характерных для условий эксплуатации ИИС;
  • наличие эталонов и средств задания измеряемых величин.
  • В тех случаях, когда для ИК ИИС не выполняются перечисленные выше условия применения "сквозного" метода контроля и определения MX ИК ИИС, применяют расчетно-экспериментальный способ. В ИК выделяется такая его часть, которая состоит из компонентов с нормированными MX, для которой применим "сквозной" метод. Желательно, чтобы в доступную часть ИК входило как можно большее число его компонентов, чтобы по возможности охватить при контроле MX линии связи, функциональные преобразователи, устройства связи с объектом, вычислительные устройства. MX ИК в целом вычисляются по определенным экспериментально MX доступной части и нормированным или приписанным MX (по результатам ранее проведенных экспериментальных исследований) недоступной части ИК.
  • Выбор экспериментального метода определения и контроля MX ИК ИИС зависит от ряда влияющих факторов, определяющих постановку и проведение эксперимента. На выбор указанных методов влияет также наличие или отсутствие априорных сведений о метрологических свойствах ИК ИИС, вид ИК. Априорные сведения о составе и существенности влияющих факторов могут быть получены: из НД и ТД на ИИС. При отсутствии априорных сведений по составу и существенности факторов, влияющих на точность измерений, проводят предварительное исследование метрологических свойств ИК ИИС. Такие исследования обычно проводят в рамках исследовательских или предварительных испытаний, осуществляемых на этапах разработки, проектирования ИИС или ввода её в эксплуатацию. В рамках поверочных работ подобные исследования не проводятся.
  • Методика поверки ИК конкретных образцов ИИС разрабатывается на стадии разработки, предварительных исследований, проверяется и утверждается на стадии проведения испытаний для целей утверждения типа. Разработаны и используются некоторые обобщенные методы контроля MX, используемые при поверке ИК ИИС. Однако, учитывая сложность состава ИИС, методики поверки в подавляющем большинстве случаев индивидуальны для конкретных образцов или типов ИИС. Далее приведены некоторые из общих методов контроля.
  • Рассмотрим случай, когда преобладают влияющие факторы, которые приводят к закономерному искажению результатов измерений, а стандартным отклонением (мерой неопределенности, оцениваемой по типу А) можно пренебречь. Структурная схема для выполнения поверки аналоговых и цифроаналоговых ИК приведена на рис.1.
  • Рис.1. Структурная схема поверки ИК.
  • Эталон 1 задает при входе ИК значения измеряемой величины, соответствующие проверяемым точкам диапазона измерений. При поверке цифроаналоговых ИК в качестве эталона 1 используется произвольный задатчик кодов. Эталон 2 измеряет значения выходных сигналов ИК (в
  • частном случае, когда на выходе ИК установлен показывающий аналоговый измерительный прибор, считываются его показания). Для каждой проверяемой точки X входного сигнала вычисляются нижняя Въ и верхняя B t границы, в пределах которых могут находиться выходные сигналы ИК (показания эталона 2).
  • В ь = F n (X) - D o
  • B t = F n (X) + D 0 ,
  • где F n (X) - значение выходного сигнала ИК, вычисленное для проверяемой точки X по номинальной функции преобразования ИК;
  • D o - граница (предел) допускаемых отклонений выходного сигнала ИК от номинального значения.
  • При необходимости может вводиться контрольный допуск, равный 0,8 границы D o . По эталону 1 устанавливают последовательно значения X, соответствующие проверяемым точкам диапазона измерений, считывают и регистрируют показания эталона 2. Если для всех проверяемых точек X выполняется неравенство
  • B b < Y(X) < B t ,
  • где Y(X) - значение выходного сигнала ИК при входном сигнале равном X. ИК считается удовлетворяющим заданным требованиям (годным). Если хотя бы в одной из проверяемых точек это неравенство не выполняется, то ИК считается не удовлетворяющим заданным требованиям (бракуется).
  • Структурная схема для выполнения поверки аналого-цифровых ИК приведена на рис.2. Рассмотрим аналогичный случай, когда преобладают влияющие факторы, которые приводят к закономерному искажению результатов измерений, а стандартным отклонением (мерой неопределенности, оцениваемой по типу А) можно пренебречь.
  • Рис.2. Структурная схема поверки аналого-цифровых ИК.
  • Эталон задает на входе ИК значения X измеряемой величины или ее носителя, соответствующие проверяемым точкам диапазона измерений. На выходе ИК получается код (показание) N, которое может быть считано экспериментатором или автоматическим устройством. Для каждой проверяемой точки N o (для аналого-цифровых ИК проверяемые точки задают
  • указанием значения N o выходного кода или показания) вычисляют значения Xki и контрольных сигналов по формулам:
  • Хи = F no (N o) - D o
  • Xk2 = F no (N o) + D o ,
  • где F no (N o) - значение входного сигнала ИК, вычисленное для проверяемой точки по номинальной обратной функции преобразования ИК;
  • D o - граница допускаемых отклонений входного сигнала от номинального значения.
  • При необходимости может вводиться контрольный допуск, равный 0,8 границы D o .
  • Устанавливают значение величины X, подаваемой на вход ИК, равным Xki и регистрируют выходной код (показание) Ni проверяемого ИК. Если удовлетворяется неравенство Ni > N o , проверяемый ИК бракуют. В противном случае устанавливают значение величины X, подаваемой на вход ИК, равным Хк2 и регистрируют выходной код (показание) N2 проверяемого ИК. Если удовлетворяется неравенство N2 < N o , проверяемый ИК бракуют. ИК должен удовлетворять установленным нормам для всех контролируемых точек диапазона измерений.
  • ИИС и ИК ИИС, не подлежащие ГМКН, подвергаются калибровке. Несмотря на то, что в разделении понятий поверка и калибровка основным является законодательный аспект, содержание работ по калибровке несколько отличается от содержания работ по поверке, что следует из определения, приведенного в РМГ 29-99. Далее в РМГ 29-99 следует примечание, в котором указывается, что результаты калибровки позволяют определять поправки и другие MX СИ. Учитывая тот факт, что эксплуатация ИИС часто происходит в условиях дефицита априорной информации о MX её компонентов и ИИС в целом, поверочные работы (также как и работы по калибровке) должны осуществляться с учетом необходимости постоянного уточнения MX ИИС, степени их деградации во времени, установления и корректировки МПИ, которые часто (в отношении ИИС-3 как правило) являются индивидуальными для каждого конкретного образца ИИС. При разработке и МЭ методик поверки (калибровки), проведении испытаний для целей утверждения типа этот факт должен учитываться как разработчиком, так и заказчиком. Результаты поверок и калибровок должны являться одной из самых важных составляющих информации, которую следует принимать во внимание при анализе изменения MX ИК ИИС.
  • 1.3 Метод определения погрешности
  • Метод определения погрешности аналоговых и цифро-аналоговых ИК для случая пренебрежимо малой случайной составляющей погрешности
  • Если проверяемая точка диапазона измерений X задана в единицах прямоизмеряемой величины или её носителя, то по эталону 1 устанавливают значение входного сигнала, равное X, считывают и регистрируют показания Y эталона 2 и рассчитывают значение D абсолютной погрешности ИК, выраженное в единицах выходного сигнала, по формуле
  • где F n (X) - значение выходного сигнала ИК, вычисленное для исследуемой точки X по номинальной прямой функции преобразования ИК.
  • Если проверяемая точка диапазона измерений Y задана в единицах выходного носителя или показания, то по эталону 1 устанавливают такое значение входного сигнала X, при котором показание эталона 2 равно Y.
  • Значение абсолютной погрешности вычисляется в единицах входного сигнала ИК по формуле
  • Метод определения характеристик погрешности аналоговых и цифро-аналоговых ИК для случая существенной случайной составляющей погрешности.
  • В каждой проверяемой точке проводится не менее n = 10 отсчётов D i (где i = l, 2, ... n) погрешности проверяемого ИК.
  • В случае, когда не требуется большой точности эксперимента, или есть основания считать закон распределения случайной составляющей погрешности нормальным, можно для упрощения расчётов принять параметр p = 2. В противном случае целесообразно применить методику п.5.1 в полном объёме.
  • Метод определения погрешности аналого-цифровых ИК для случая пренебрежимо малой случайной составляющей погрешности.
  • Вариант, который может быть использован при любом соотношении номинальной ступени квантования и границы погрешности ИК, но обязателен для применения при D 0 < 5q; проверяемые точки диапазона измерений задают указанием значения N 0 выходного кода или показания ИК.
  • Регулируя выходной сигнал эталона 1 (ступень регулирования должна быть не более 0,25 q (0,25 номинальной ступени квантования проверяемого ИК), устанавливают на входе ИК такое значение Х m прямоизмеряемой величины или её носителя, при котором на выходе ИК или наблюдается переход от кода (показания) N 0 - q к заданному коду N 0 проверяемой точки, или наступает приблизительно равночастное чередование кодов N 0 - q и N 0 . Значение погрешности ИК при выходном коде N 0 вычисляют по формуле
  • При этом формула написана для случая, когда N 0 0, X m 0, q - положительное. Если N 0 < 0, Х m < 0, то величине q следует приписать знак минус. Методика не применима, если величины N 0 , N 0 - q и Х m имеют разные знаки.
  • Вариант, допускаемый к применению только при D 0 5q; проверяемые точки диапазона измерений задают указанием значения Х 0 прямоизмеряемой величины или её носителя, поступающих на вход ИК.
  • На вход проверяемого канала подают от эталона 1 значение Х 0 измеряемой величины или её носителя, соответствующее проверяемой точке диапазона измерений. Считывают и регистрируют значение N выходного кода (показания) ИК. Если наблюдается случайное чередование смежных кодов (показаний), то считывают код (показание), наиболее отличающийся от значения Х 0 . Вычисляют погрешность ИК по формуле
  • Примечание. Следует иметь ввиду, что метод имеет методическую погрешность. Оценка погрешности ИК всегда получается меньшей (по модулю) её истинного значения, и это уменьшение может достигать размера номинальной ступени квантования q проверяемого ИК.
  • Метод определения характеристик - погрешности аналого-цифровых ИК для случая существенной случайной составляющей погрешности
  • Метод применяется когда СКО случайной составляющей погрешности превышает 0,25q, т.е. при любом значении измеряемой величины в пределах любой ступени квантования чередуются случайным образом не менее двух значений выходного кода (показания) ИК. Проверяемые точки диапазона измерений задают указанием значения Х 0 прямоизмеряемой величины или её носителя.
  • На вход проверяемого канала подают от эталона 1 значение Х 0 измеряемой величины или её носителя, соответствующее исследуемой точке диапазона измерений. Считывают и регистрируют n 10 значений N i (где i = 1, 2, ..., n) выходного кода (показания) ИК. Вычисляют значения погрешностей ИК по формуле
  • При вычислении СКО случайной составляющей погрешности, определяемой, следует вводить поправку Шеппарда
  • где - lp-оценка СКО, вычисленная по формуле п.5.1.3 для найденного значения р.
  • При р = 2:
  • Если подкоренное выражение получилось меньшим нуля, следует считать, что случайная составляющая погрешности пренебрежимо мала по сравнению с номинальной ступенью квантования ИК, т.е. S P = 0.
  • 1. 4 Проблемы и способы решения в области поверки и калибровки ИИС
  • Проблемы проведения испытаний СИ и ИИС тесно связаны с проблемами их метрологической надежности, под которой понимается способность СИ (ИИС) сохранять установленные значения MX в течение заданного времени при определенных режимах и условиях эксплуатации. Учитывая уникальность каждой ИИС, проблема сводится к вопросу обеспечения постоянного мониторинга за характером изменения MX ИИС и ее компонентов на месте эксплуатации ИИС, использование полученной при этом информации для корректировки МПИ. Один из важных путей решения этой задачи - развитие и совершенствование методов самокалибровки и самодиагностики ИК ИИС.
  • Для многих ИИС характерен автономный - в метрологическом смысле -режим использования, когда не может быть реализована ее оперативная связь с вышестоящими по поверочной схеме средствами. Автономный режим использования ИИС является одним из источников проблемы децентрализации в системе обеспечения единства измерений. Если для традиционно используемых средств привязка к эталону означает, в конечном итоге, перемещение к месту его дислокации, то для автономной ИИС необходимо встречное движение эталона к месту ее размещения. Соответственно необходима разработка и совершенствование транспортируемых эталонов, необходимых для поверки и калибровки ИК ИИС. При этом необходимо учитывать, что транспортируемые эталоны часто будут использоваться в условиях, отличных от условий хранения и применения эталонов в организациях ГМС и ГНМЦ. Вопросы о методиках и необходимости использования транспортируемых эталонов должны быть решены на стадиях разработки и испытаний ИИС.
  • При развитии ИИС проявляются общие тенденции в развитии измерительной техники:
  • возрастание точности, расширение номенклатуры измеряемых величин и измерительных задач, расширение диапазонов измерений;
  • обеспечение доступа потребителей к средствам измерений высшей точности;
  • обеспечение измерений в условиях воздействия "жестких" внешних факторов (высокая температура, большое давление, ионизирующее излучение и т.д.)
  • Расширение номенклатуры измеряемых величин в рамках одной ИИС приводит к необходимости "привязки" ИИС к нескольким поверочным схемам. Для решение вопросов самокалибровки необходимо наличие в структуре ИИС встроенных эталонов, что приводит к росту требований по точности к транспортируемым эталонам и практический выход в высшие звенья поверочных схем. Следует отметить, что в настоящее время существуют две противоположные тенденции в развитии техники восприятия входных величин. В соответствии с одной точкой зрения максимум операций по формированию наиболее подходящего для дальнейшего преобразования сигнала следует выполнять в первичном измерительном преобразователе (датчике). Применение интегральных технологий для изготовления чувствительных элементов создает благоприятные возможности производства различных интеллектуальных датчиков, представляющих собой интегральные системы сбора и предварительной обработки результатов измерений. Подобные датчики должны формировать сигналы, не требующие обязательного усиления, иметь слабую чувствительность к влияющим факторам. Учитывая необходимость установки таких датчиков на объекте, что увеличивает недоступную часть ИК ИИС, появляется необходимость в дальнейшем совершенствовании расчетно-экспериментальных методов определения MX и их контроля. Повышаются требования к индивидуальной градуировке интеллектуальных датчиков.
  • В области наиболее массовых измерений, например температуры с помощью термопар, основная задача по преобразованию сигналов от датчиков с минимальными потерями измерительной информации решается с помощью ИК. В данном случае используются простые датчики с типовыми характеристиками. В качестве примера могут служить испытания крупных турбогенераторов, при которых в разных точках испытуемого изделия размещают сотни датчиков, рассчитанных на различные диапазоны температур. В данном случае необходимо совершенствование методов испытаний многоканальных ИИС.
  • Передача размера единиц физических величин от эталонов рабочим средствам измерений (СИ) является одной из задач поверки СИ, которая в применении к измерительным системам (ИС) может быть решена двумя способами: комплектно и поэлементно. Оба этих способа легли в основу проекта рекомендаций “ГСИ. Порядок проведения поверки измерительных систем”. Вместе с тем, отзывы, полученные в результате рассылки проекта рекомендаций, показали, что специалисты-метрологи, занимающиеся разработкой и утверждением методик поверки, по-разному понимают и трактуют некоторые особенности каждого из способов поверки. Цель настоящей работы состоит в рассмотрении возникших противоречий и выработке единого подхода к понятиям “передача размера единиц физических величин” и “условия поверки” в применении к ИС.
  • В соответствии с ГОСТ Р 8.596-2002 при комплектной поверке “контролируют метрологические характеристики измерительных каналов ИС в целом (от входа до выхода канала)”.
  • При таком подходе передача размера единиц физических величин ИС от эталонов должна осуществляться так, как это принято для рабочих СИ, т. е. с соблюдением нормальных условий и обязательным введением контрольных допусков (называемых также коэффициентами метрологического запаса) - для обеспечения требуемой достоверности поверки согласно МИ 187-86 и МИ 188-86. При этом поверяемое СИ признаётся пригодным к применению лишь в том случае, если при проверке основной погрешности, её значения не превысят допускаемой нормы:
  • где - предел допускаемой основной погрешности, регламентированный для поверяемого СИ; - коэффициент, определяющий контрольный допуск и зависящий от требований к достоверности поверки и соотношения между пределами погрешности эталона и поверяемого СИ, .
  • Однако анализ методик поверки, согласованных, в том числе, уважаемыми метрологическими институтами, показал совершенно противоположное - контрольные допуски не назначаются, поверку рекомендуется проводить в рабочих условиях, случайно сложившихся на момент поверки. При этом при проверке основной погрешности в качестве допускаемых норм применяются значения, вычисленные с учётом результатов измерений влияющих величин, сложившихся на момент проведения поверки по формуле:
  • где - коэффициент влияния i -й влияющей величины, регламентированный для поверяемого ИК ИС; - результат измерений i -й влияющей величины; - ближайшее к результату измерений граничное (минимальное или максимальное) значение нормальных условий эксплуатации, регламентированное для поверяемого ИК ИС; n - количество влияющих величин, регламентированных в качестве условий поверки для поверяемого ИК ИС.
  • Разумеется, применение допускаемых норм, вычисленных по формуле,при проверке основной погрешности является грубейшим нарушением метрологических правил и может привести к существенному снижению достоверности получаемых результатов поверки ввиду того, что:
  • - допускаемые нормы не должны превышать предела допускаемой основной погрешности;
  • - при использовании средств поверки в рабочих условиях эксплуатации поверяемого ИК ИС может нарушиться принятое соотношение между пределами погрешности эталона и поверяемого ИК ИС.
  • Так, возможно ли проведение комплектной поверки (проверки основной погрешности ИК ИС) в условиях, отличающихся от нормальных? Если подходить к рассмотрению этого вопроса формально, то - нельзя, т. к. передача размера единиц физических величин должна осуществляться в нормальных условиях.
  • Вместе с тем при эксплуатации ИС могут возникнуть такие ситуации, что обеспечить нормальные условия для поверки ИС невозможно, а провести проверку соответствия метрологических характеристик ИК ИС установленным нормам необходимо. При такой постановке вопроса речь может идти не о поверке (в обычном её понимании), а лишь о возможности переноса результатов проверки погрешности ИК ИС, выполненного в фактических условиях эксплуатации, на нормальные условия. Для достижения той же достоверности результатов проверки основной погрешности должно быть уменьшено в связи с расширением диапазона изменений влияющих величин и возможным увеличением погрешности средств поверки (в условиях эксплуатации, сложившихся на момент поверки ИС).
  • Следует помнить, что с уменьшением коэффициента увеличивается вероятность признания негодными в действительности пригодных к применению ИК ИС. Именно поэтому поверку допускается проводить лишь при незначительном отклонении условий поверки от нормальных (для которых нормирован предел допускаемой основной погрешности). В противном случае придётся:
  • - либо уменьшить коэффициент до таких значений, что практически все поверяемые ИК ИС будут признаваться негодными,
  • - либо уменьшить значения достоверности поверки, т. е. увеличить вероятность признания годными в действительности непригодных к применению ИК ИС, что, разумеется, недопустимо.
  • В соответствии с ГОСТ Р 8.596-2002 при поэлементной поверке первичные измерительные преобразователи (датчики) демонтируют и поверяют в лабораторных условиях, а вторичную часть - комплексный компонент, включая линии связи, поверяют на месте установки ИС при одновременном контроле всех влияющих факторов, действующих на отдельные компоненты.
  • Следовательно, передача размера единиц физических величин первичным измерительным преобразователям (датчикам) должна осуществляться в нормальных условиях в соответствии с нормативным документом, регламентирующим их поверку (принятым ГЦИ СИ при утверждении типа первичных измерительных преобразователей). Для этого в методике поверки ИС в разделе “Рассмотрение документации” достаточно предусмотреть проверку пригодности к применению первичных измерительных преобразователей (путём проверки свидетельств о поверке или отметок и оттисков поверительных клейм в эксплуатационной документации).
  • Что же касается оставшейся части ИК ИС, то в соответствии с ГОСТ Р 8.596-2002 передача размера единиц физических величин комплексному компоненту, включая линии связи, должна осуществляться на месте установки ИС при одновременном контроле всех влияющих факторов, действующих на отдельные компоненты. При этом все рассуждения, должны быть распространены и на комплектную поверку оставшейся части ИК.
  • В таких условиях возникает резонный вопрос: должны ли поверяться отдельно компоненты ИС, являющиеся СИ и входящие в состав комплексного компонента, или они должны проходить поверку только в составе ИС? С одной стороны, такие СИ утверждённого типа, применяемые в сферах государственного метрологического контроля и надзора, должны проходить поверку в соответствии с нормативными документами, регламентирующих их поверку (принятым ГЦИ СИ при утверждении их типа). Следовательно, инспектора государственного метрологического надзора вправе потребовать на такие СИ (в том числе и на комплексы измерительно-вычислительные) документы, подтверждающие их поверку. С другой стороны, такие СИ входят в состав комплексного компонента ИС и отдельно от него не применяются. Зачем такие СИ (например, упомянутые выше комплексы измерительно-вычислительные) поверять 2 раза - отдельно и в составе комплексного компонента? Это не только расточительно, но и нецелесообразно.
  • Вместе с тем существуют многочисленные системы, в которых все компоненты, являющиеся СИ поверяются поэлементно в соответствии с нормативными документами, регламентирующими их поверку. Очевидно, что в таких случаях, когда размер единиц физических величин уже передан всем компонентам ИС, являющимися СИ, поверка ИС должна заключаться лишь в различных проверках (внешнего вида, условий эксплуатации компонентов, работоспособности, характеристик безопасности, взаимного влияния каналов, от несанкционированного доступа, программного обеспечения и др.), которые вполне могут быть выполнены и в рабочих условиях.
  • Следует вспомнить, что такой подход принят для большинства теплосчётчиков, компонентам которых (расходомерам, термопреобразователям и тепловычислителям) размер единиц физических величин передаётся поэлементно в нормальных условиях, а при поверке проводятся лишь различные проверки (в том числе и в проекте рекомендаций “ГСИ. Теплосчётчики и измерительные системы тепловой энергии. … Общие указания по методам поверки”). Такой же подход был, в частности, принят за основу в МИ 3000-2006, в которых “условия поверки ИС должны соответствовать условиям её эксплуатации, нормированным в технической документации, но не выходить за нормированные условия применения средств поверки”.
  • При проведении различных проверок ИС (в ходе её поверки) целесообразно предусматривать различные условия поверки: при передаче размеров единиц физических величин - нормальные условия, при других проверках - рабочие условия.
  • Обратить внимание ГЦИ СИ и отдела Государственного реестра СИ на необходимость соблюдения нормальных условий при передаче размеров единиц физических величин и целесообразность введения контрольных допусков при рассмотрении и согласовании нормативных документов, регламентирующих поверку СИ, которые должны сопровождаться расчётами достоверности.
  • Передачу размеров единиц физических величин в условиях, отличающихся от нормальных, применять лишь в обоснованных случаях при тщательной проверке, подтверждённой расчётами возможности переноса результатов проверки погрешности ИК ИС, выполненной в фактических условиях эксплуатации, на нормальные условия.
  • Для разрешения противоречий с органами государственного метрологического надзора (и других надзорных органов) предусматривать в нормативных документах, регламентирующих поверку ИС, прямое указание на нецелесообразность поэлементной поверки СИ (с указанием их перечня), входящих в состав комплексного компонента и поверяемых комплектно в его составе.
  • 2. Организация работ по обеспечению качества на предприятии ФБУ «Сахалинский ЦСМ»
  • Обеспечение качества услуг является стратегическим направлением деятельности Сахалинского центра стандартизации, метрологии и сертификации.
  • В области качества руководство IICM ставит перед собой достижение следующих целей:
  • совершенствовать деятельность ЦСМ при выполнении основных задач согласно Устава ФБУ «Сахалинский ЦСМ» Федерального агентства по техническому регулированию и метрологии, постоянно удовлетворяя требования Потребителей в качестве и номенклатуре услуг;
  • проводить поверку, калибровку средств измерений на уровне, отвечающем требованиям государственной системы обеспечения единства измерений;
  • постоянно расширять деятельность в области испытаний продукции;
  • обеспечивать конкурентоспособность ЦСМ среди организаций, оказывающих аналогичные услуги, путем достижения признания на национальном уровне, как компетентного, независимого и беспристрастного органа;
  • ежегодно увеличивать объем предоставляемых потребителям услуг, отвечающих по качеству национальным требованиям, с учетом структуры потребностей в данных услугах в регионе;
  • Достижение этих целей обеспечивается:
  • приоритетом качества во всей деятельности ЦСМ, и, прежде всего, в области кадровых, организационных и технических вопросов;
  • систематическим обучением и повышением квалификации всего персонала ЦСМ в области качества;
  • поддержанием поверочно-технологической базы на техническом уровне, обеспечивающем требования нормативных документов на поверку и калибровку средств измерений;
  • выполнением политики в области качества и принятием решений и действий, соответствующих только этой политике;
  • обеспечением условий стимулирования каждого члена коллектива в качестве и объеме выполняемых работ.
  • Система общего руководства качеством, отвечающая требованиям международных стандартов ИСО серии 9000, гарантирует нашим Потребителям стабильное качество услуг.
  • ФБУ «Сахалинский ЦСМ» непрерывно совершенствует систему менеджмента качества с целью повышения её результативности посредством корректирующих и предупреждающих действий.
  • Потребность в проведении корректирующих и предупреждающих действий для устранения причин несоответствий может определяться:
  • результатами внутренних проверок (аудитов) системы качества и проверок внешними организациями;
  • результатами внутренних проверок, проводимых руководством ФБУ «Сахалинский ЦСМ» в подразделениях;
  • результатами анализа претензий потребителей.
  • Ответственность за координацию, регистрацию и контроль корректирующих и предупреждающих действий, относящихся к функционированию и внутренним проверкам (аудитам) системы качества, возложена на представителя руководства по качеству, заведующую ИЛ, главного метролога и руководителей подразделений.
  • Ответственность за организацию и осуществление корректирующих и предупреждающих действий в подчиненных подразделениях для устранения и предотвращения несоответствий при проведении работ и оказании услуг, а также по результатам внутренних проверок (аудитов)системы качества несут руководители подразделений.

Заключение

Обеспечение единства и требуемой точности измерений - было и остается главной задачей метрологии. Только проведение систематического анализа производства, проведение мероприятий по повышению его эффективности на основе совершенствования метрологического обеспечения, внедрение в практику современных методов и средств измерений позволит решить эту задачу.

Метрологическая служба нашего предприятия с успехом решает многие проблемы в области по обеспечению точности измерений. Примером может служить постоянное совершенствование эталонной базы с учетом требований современной измерительной техники, а так же требований технологических процессов измерительных каналов АСУ ТП.

Список используемой л итератур ы

1. Федеральный закон «Об обеспечении единства измерений» № 102-ФЗ. 2008 г.

2. ПР 50.2.006-94 ГСИ. Порядок проведения поверки СИ.

3. РМГ 29-29 ГСИ. Метрология. Основные термины и определения.

4. ГОСТ 8.207-76 Прямые измерения с многократными наблюдениями. Методы обработки результатов измерений.

5. ПР 50 2.016-94 ГСИ. Требования к выполнению калибровочных работ.

6. МИ 2439--97 Государственная система обеспечения единства измерений. Метрологические характеристики измерительных систем. Номенклатура. Принцип регламентации, определения и контроля

7. МИ 2440--97 Государственная система обеспечения единства измерений. Методы экспериментального определения и контроля характеристик погрешности измерительных каналов измерительных систем и измерительных комплексов

8. МИ 222-80 Методика расчета метрологических характеристик ИК ИИС по метрологическим характеристикам компонентов

9. МИ 2539--99 Государственная система обеспечения единства измерений. Измерительные каналы контроллеров, измерительно-вычислительных, управляющих, программно-технических комплексов. Методика поверки

10. МИ 2168--91 Государственная система обеспечения единства измерений. ИИС. Методика расчета метрологических характеристик измерительных каналов по метрологическим характеристикам линейных аналоговых компонентов

11. РД 50-453--84 Характеристики погрешности средств измерений в реальных условиях эксплуатации. Методы расчета

12. МИ 1552--86 Государственная система обеспечения единства измерений. Измерения прямые однократные. Оценивание погрешностей результатов измерений

13. МИ 2083--90 Государственная система обеспечения единства измерений. Измерения косвенные. Определение результатов измерений и оценивание их погрешностей

14. ГОСТ Р 8.596-2002 Государственная система обеспечения единства измерений. Метрологическое обеспечение измерительных систем. Основные положения.

15. Сборник докладов III международной научно-технической конференции 2-6 октября 2006 г. Пенза УДК 621.317

Метрологическое обеспечение измерительных систем. / Сборник докладов III международной научно-технической конференции. Под ред. А. А. Данилова. - Пенза, 2006. - 218 с.

Размещено на Allbest.ru

Подобные документы

    Определение структуры информационно-измерительных систем и устройств сопряжения с ЭВМ. Расчет метрологических характеристик измерительных каналов. Протокол измерений значений функции преобразования ИК ИИС. Продолжительность межповерочных интервалов.

    курсовая работа , добавлен 22.03.2015

    Применение и развитие измерительной техники. Сущность, значение и классификация информационных измерительных систем, их функции и признаки. Характеристика общих принципов их построения и использования. Основные этапы создания измерительных систем.

    реферат , добавлен 19.02.2011

    Разработка программного обеспечения для автоматизированной системы калибровки и поверки комплекса технических средств ПАДК "Луг-1". Аналитический обзор аналогов. Проектирование пользовательского интерфейса. Средства разработки программного обеспечения.

    дипломная работа , добавлен 17.12.2014

    Изучение предметной области и выполнение анализа автоматизированных информационных систем для учета и обслуживания контрольно-измерительных приборов. Выбор инструментального средства разработки. Реализация базы данных проведена СУБД Microsoft Access.

    дипломная работа , добавлен 14.12.2011

    Изучение алгоритмов допускового контроля достоверности исходной информации, с помощью которых выявляются полные и частичные отказы информационно-измерительных каналов. Определение погрешности выполнения уравнения связи между количествами информации.

    лабораторная работа , добавлен 14.04.2012

    Назначение, задачи и технология внедрения информационных систем. Подготовка нормативно-справочной информации. Аналитическая поддержка принятия управленческих решений. Оперативная обработка данных о фактах производственно-хозяйственной деятельности.

    курсовая работа , добавлен 16.10.2013

    Общее понятие и признаки классификации информационных систем. Типы архитектур построения информационных систем. Основные компоненты и свойства базы данных. Основные отличия файловых систем и систем баз данных. Архитектура клиент-сервер и ее пользователи.

    презентация , добавлен 22.01.2016

    Программы, необходимые для правильной работы устройства калибровки цифрового акселерометра и реализующие обмен данными по протоколу SPI между акселерометром и ПЛИС, а также RS-232 для передачи данных с макета на ПЭВМ. Инициализация MEMS-акселерометра.

    реферат , добавлен 13.11.2016

    Общее понятие, история возникновения и эволюция корпоративных информационных систем. Сущность, виды, возможности и механизм работы систем класса MRPII/ERP. Способы внедрения и оценка эффективности использования систем класса MRPII/ERP на предприятии.

    курсовая работа , добавлен 03.06.2010

    Правила проведения и способы калибровки монитора - процедуры приведения параметров воспроизведения информации устройством в строгое соответствие с определенными требованиями, регламентируемыми специальными стандартами. Аппаратная и программная калибровка.

2 часа назад, АКК сказал:

Возможно, для кого-то это бредовая тема, но вопрос не в РСУ или ПАЗ. И в чем разница, если это ОПО? Повторюсь, ст. 1 п. 3 ФЗ "Об обеспечении единства измерений". В соответствии со ст. 13 п.1 СИ, предназначенные для применения в сфере государственного регулирования обеспечения единства измерений, подлежат поверке.

На основании какого документа я обязан подтвердить целостность и неизменность алгоритма вычислений и блоков? Не знаю, какая РТ-МП-2421-551-2015 «Системы измерительные и управляющие SPPA-T3000. Методика поверки», навряд ли сильно отличается от МИ 2539-99 "ГСИ. Измерительные каналы контроллеров, измерительно-вычислительных, управляющих, программно-технических комплексов. Методика поверки." в которой подробно описано, как и какие ИК поверять.

А вопрос был в следующем - является ли нарушением, если ИС состоящая из отдельных СИ (таких, как ProSafe-RS или SPPA-T3000 и первичных преобразователей) состоящих в госреестре не проходила процедуру утверждения типа, как целая ИС. Тут прозвучало мнение, что не сертификация ИС в целом нарушает ГОСТ Р 8.596-2002 "Метрологическое обеспечение измерительных систем". ИМХО: этот ГОСТ создавался для измерительных систем в состав которых входят СИ не состоящие в госреестре. А если все СИ имеют сертификат об утверждении типа, то не запрещает сертифицировать ИС, как целую. Но не обязывает. Кто следит за соблюдением гостов? РТН? Выписывали ли РТН предписания кому-то по этому поводу?

Но РСУ это не СИ. И даже не ИС. Четкое определение-Технические системы и устройства с измерительными функциями.

Повторю еще раз:

Порядок отнесения технических средств к техническим системам и устройствам с измерительными функциями

а) техническое средство наряду с основной функцией выполняет измерительные функции , имеющие соответствующие метрологические характеристики, причем измерительные функции являются дополнительными (вспомогательными) функциями , а результаты измерений, полученные в процессе выполнения техническим средством основной функции, используются в областях деятельности, на которые распространяется сфера государственного регулирования обеспечения единства измерений, или для других целей;

Основная функция РСУ- управление технологическим процессом.

МИ 2539-99- это 1999 год, а не 2017.

2 часа назад, АКК сказал:

На основании какого документа я обязан подтвердить целостность и неизменность алгоритма вычислений и блоков?

ФЗ-102

Статья 9. Требования к средствам измерений

2. Конструкция средств измерений должна обеспечивать ограничение доступа к определенным частям средств измерений (включая программное обеспечение) в целях предотвращения несанкционированных настройки и вмешательства, которые могут привести к искажениям результатов измерений.